Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway
Abstract Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common n...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-09-01
|
Series: | Journal of Neuroinflammation |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12974-018-1271-9 |
_version_ | 1818031456862076928 |
---|---|
author | Xiao-Qian Li Qian Yu Feng-Shou Chen Wen-Fei Tan Zai-Li Zhang Hong Ma |
author_facet | Xiao-Qian Li Qian Yu Feng-Shou Chen Wen-Fei Tan Zai-Li Zhang Hong Ma |
author_sort | Xiao-Qian Li |
collection | DOAJ |
description | Abstract Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear. This study aimed to elucidate the roles of p53-PUMA feedback interactions in the spinal cord after IR, specifically investigating their regulation of caspase 3-mediated apoptosis and nuclear factor (NF)-κB-mediated cytokine release. Methods SD rats subjected to 12 min of aortic arch occlusion served as IR models. Neurological assessment as well as p53 and PUMA mRNA and protein expression analyses were performed at 12-h intervals during a 48-h reperfusion period. The cellular distributions of p53 and PUMA were determined via double immunofluorescence staining. The effects of the p53-PUMA feedback loop on modulating hind-limb function; the number of TUNEL-positive cells; and protein levels of caspase 3, NF-κB and cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, were evaluated by intrathecal treatment with PUMA-specific or scramble siRNA and pifithrin (PFT)-α. Blood-spinal cord barrier (BSCB) breakdown was examined by Evans blue (EB) extravasation and water content analyses. Results IR induced significant behavioural deficits as demonstrated by deceased Tarlov scores, which displayed trends opposite those of PUMA and p53 protein and mRNA expression. Upregulated PUMA and p53 fluorescent labels were widely distributed in neurons, astrocytes and microglia. Injecting si-PUMA and PFT-α exerted significant anti-apoptosis effects as shown by the reduced number of TUNEL-positive cells, nuclear abnormalities and cleaved caspase 3 levels at 48 h post-IR. Additionally, p53 colocalized with NF-κB within the cell. Similarly, injecting si-PUMA and PFT-α exerted anti-inflammatory effects as shown by the decreased NF-κB translocation and release of IL-1β and TNF-α. Additionally, injecting si-PUMA and PFT-α preserved the BSCB integrity as determined by decreased EB extravasation and spinal water content. However, injecting si-Con did not induce any of the abovementioned effects. Conclusions Inhibition of aberrant p53-PUMA feedback loop activation by intrathecal treatment with si-PUMA and PFT-α prevented IR-induced neuroapoptosis, inflammatory responses and BSCB breakdown by inactivating caspase 3-mediated apoptosis and NF-κB-mediated cytokine release. |
first_indexed | 2024-12-10T05:51:46Z |
format | Article |
id | doaj.art-034112cce91c4edd8445eb25171abe09 |
institution | Directory Open Access Journal |
issn | 1742-2094 |
language | English |
last_indexed | 2024-12-10T05:51:46Z |
publishDate | 2018-09-01 |
publisher | BMC |
record_format | Article |
series | Journal of Neuroinflammation |
spelling | doaj.art-034112cce91c4edd8445eb25171abe092022-12-22T02:00:01ZengBMCJournal of Neuroinflammation1742-20942018-09-0115111310.1186/s12974-018-1271-9Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathwayXiao-Qian Li0Qian Yu1Feng-Shou Chen2Wen-Fei Tan3Zai-Li Zhang4Hong Ma5Department of Anesthesiology, First Affiliated Hospital, China Medical UniversityDepartment of Thoracic Surgery, Fourth Affiliated Hospital, China Medical UniversityDepartment of Anesthesiology, First Affiliated Hospital, China Medical UniversityDepartment of Anesthesiology, First Affiliated Hospital, China Medical UniversityDepartment of Anesthesiology, First Affiliated Hospital, China Medical UniversityDepartment of Anesthesiology, First Affiliated Hospital, China Medical UniversityAbstract Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear. This study aimed to elucidate the roles of p53-PUMA feedback interactions in the spinal cord after IR, specifically investigating their regulation of caspase 3-mediated apoptosis and nuclear factor (NF)-κB-mediated cytokine release. Methods SD rats subjected to 12 min of aortic arch occlusion served as IR models. Neurological assessment as well as p53 and PUMA mRNA and protein expression analyses were performed at 12-h intervals during a 48-h reperfusion period. The cellular distributions of p53 and PUMA were determined via double immunofluorescence staining. The effects of the p53-PUMA feedback loop on modulating hind-limb function; the number of TUNEL-positive cells; and protein levels of caspase 3, NF-κB and cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, were evaluated by intrathecal treatment with PUMA-specific or scramble siRNA and pifithrin (PFT)-α. Blood-spinal cord barrier (BSCB) breakdown was examined by Evans blue (EB) extravasation and water content analyses. Results IR induced significant behavioural deficits as demonstrated by deceased Tarlov scores, which displayed trends opposite those of PUMA and p53 protein and mRNA expression. Upregulated PUMA and p53 fluorescent labels were widely distributed in neurons, astrocytes and microglia. Injecting si-PUMA and PFT-α exerted significant anti-apoptosis effects as shown by the reduced number of TUNEL-positive cells, nuclear abnormalities and cleaved caspase 3 levels at 48 h post-IR. Additionally, p53 colocalized with NF-κB within the cell. Similarly, injecting si-PUMA and PFT-α exerted anti-inflammatory effects as shown by the decreased NF-κB translocation and release of IL-1β and TNF-α. Additionally, injecting si-PUMA and PFT-α preserved the BSCB integrity as determined by decreased EB extravasation and spinal water content. However, injecting si-Con did not induce any of the abovementioned effects. Conclusions Inhibition of aberrant p53-PUMA feedback loop activation by intrathecal treatment with si-PUMA and PFT-α prevented IR-induced neuroapoptosis, inflammatory responses and BSCB breakdown by inactivating caspase 3-mediated apoptosis and NF-κB-mediated cytokine release.http://link.springer.com/article/10.1186/s12974-018-1271-9ApoptosisBlood-spinal cord barrierInflammationIschaemia reperfusionp53p53 upregulated modulator of apoptosis |
spellingShingle | Xiao-Qian Li Qian Yu Feng-Shou Chen Wen-Fei Tan Zai-Li Zhang Hong Ma Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway Journal of Neuroinflammation Apoptosis Blood-spinal cord barrier Inflammation Ischaemia reperfusion p53 p53 upregulated modulator of apoptosis |
title | Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway |
title_full | Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway |
title_fullStr | Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway |
title_full_unstemmed | Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway |
title_short | Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway |
title_sort | inhibiting aberrant p53 puma feedback loop activation attenuates ischaemia reperfusion induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the nf κb cytokine pathway |
topic | Apoptosis Blood-spinal cord barrier Inflammation Ischaemia reperfusion p53 p53 upregulated modulator of apoptosis |
url | http://link.springer.com/article/10.1186/s12974-018-1271-9 |
work_keys_str_mv | AT xiaoqianli inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway AT qianyu inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway AT fengshouchen inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway AT wenfeitan inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway AT zailizhang inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway AT hongma inhibitingaberrantp53pumafeedbackloopactivationattenuatesischaemiareperfusioninducedneuroapoptosisandneuroinflammationinratsbydownregulatingcaspase3andthenfkbcytokinepathway |