On Faithful Matrix Representations of q-Deformed Models in Quantum Optics

Consider the q-deformed Lie algebra, tq:K^1,K^2q=1−qK^1K^2,K^3,K^1q=sK^3, K^1,K^4q=sK^4,K^3,K^2q=tK^3,K^2,K^4q=tK^4, and K^4,K^3q=rK^1, where r,s,t∈ℝ−0, subject to the physical properties: K^1 and K^2 are real diagonal operators, and K^3=K^4†, († is for Hermitian conjugation). The q-deformed Lie alg...

Full description

Bibliographic Details
Main Authors: Latif A -M. Hanna, Abdullah Alazemi, Anwar Al-Dhafeeri
Format: Article
Language:English
Published: Hindawi Limited 2022-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2022/6737287
_version_ 1827000162125348864
author Latif A -M. Hanna
Abdullah Alazemi
Anwar Al-Dhafeeri
author_facet Latif A -M. Hanna
Abdullah Alazemi
Anwar Al-Dhafeeri
author_sort Latif A -M. Hanna
collection DOAJ
description Consider the q-deformed Lie algebra, tq:K^1,K^2q=1−qK^1K^2,K^3,K^1q=sK^3, K^1,K^4q=sK^4,K^3,K^2q=tK^3,K^2,K^4q=tK^4, and K^4,K^3q=rK^1, where r,s,t∈ℝ−0, subject to the physical properties: K^1 and K^2 are real diagonal operators, and K^3=K^4†, († is for Hermitian conjugation). The q-deformed Lie algebra, tq is introduced as a generalized model of the Tavis–Cummings model (Tavis and Cummings 1968, Bashir and Sebawe Abdalla 1995), namely, K^1,K^2=0,K^1,K^3=−2K^3,K^1,K^4=2K^4,K^2,K^3=K^3,K^2,K^4=K^4, and K^4,K^3=K^1, which is subject to the physical properties K^1 and K^2 are real diagonal operators, and K^3=K^4†. Faithful matrix representations of the least degree of tq are discussed, and conditions are given to guarantee the existence of the faithful representations.
first_indexed 2024-04-11T09:21:01Z
format Article
id doaj.art-0354a48589c34229bf5d4d444ac64c45
institution Directory Open Access Journal
issn 1687-0425
language English
last_indexed 2025-02-18T10:40:21Z
publishDate 2022-01-01
publisher Hindawi Limited
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj.art-0354a48589c34229bf5d4d444ac64c452024-11-02T05:28:18ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences1687-04252022-01-01202210.1155/2022/6737287On Faithful Matrix Representations of q-Deformed Models in Quantum OpticsLatif A -M. Hanna0Abdullah Alazemi1Anwar Al-Dhafeeri2Kuwait UniversityKuwait UniversityKuwait UniversityConsider the q-deformed Lie algebra, tq:K^1,K^2q=1−qK^1K^2,K^3,K^1q=sK^3, K^1,K^4q=sK^4,K^3,K^2q=tK^3,K^2,K^4q=tK^4, and K^4,K^3q=rK^1, where r,s,t∈ℝ−0, subject to the physical properties: K^1 and K^2 are real diagonal operators, and K^3=K^4†, († is for Hermitian conjugation). The q-deformed Lie algebra, tq is introduced as a generalized model of the Tavis–Cummings model (Tavis and Cummings 1968, Bashir and Sebawe Abdalla 1995), namely, K^1,K^2=0,K^1,K^3=−2K^3,K^1,K^4=2K^4,K^2,K^3=K^3,K^2,K^4=K^4, and K^4,K^3=K^1, which is subject to the physical properties K^1 and K^2 are real diagonal operators, and K^3=K^4†. Faithful matrix representations of the least degree of tq are discussed, and conditions are given to guarantee the existence of the faithful representations.http://dx.doi.org/10.1155/2022/6737287
spellingShingle Latif A -M. Hanna
Abdullah Alazemi
Anwar Al-Dhafeeri
On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
International Journal of Mathematics and Mathematical Sciences
title On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
title_full On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
title_fullStr On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
title_full_unstemmed On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
title_short On Faithful Matrix Representations of q-Deformed Models in Quantum Optics
title_sort on faithful matrix representations of q deformed models in quantum optics
url http://dx.doi.org/10.1155/2022/6737287
work_keys_str_mv AT latifamhanna onfaithfulmatrixrepresentationsofqdeformedmodelsinquantumoptics
AT abdullahalazemi onfaithfulmatrixrepresentationsofqdeformedmodelsinquantumoptics
AT anwaraldhafeeri onfaithfulmatrixrepresentationsofqdeformedmodelsinquantumoptics