Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve

Microorganisms represent nearly 90% of ocean biomass and are fundamental for the functioning and health of marine ecosystems due to their integral contribution to biogeochemical cycles and biological processes. In marine environments, microorganisms exist as microbial communities in the water column...

Full description

Bibliographic Details
Main Authors: Astrid Catalina Alvarez-Yela, Jeanneth Mosquera-Rendón, Alejandra Noreña-P, Marco Cristancho, Diana López-Alvarez
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-06-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmars.2019.00338/full
_version_ 1828391376077717504
author Astrid Catalina Alvarez-Yela
Jeanneth Mosquera-Rendón
Alejandra Noreña-P
Marco Cristancho
Diana López-Alvarez
author_facet Astrid Catalina Alvarez-Yela
Jeanneth Mosquera-Rendón
Alejandra Noreña-P
Marco Cristancho
Diana López-Alvarez
author_sort Astrid Catalina Alvarez-Yela
collection DOAJ
description Microorganisms represent nearly 90% of ocean biomass and are fundamental for the functioning and health of marine ecosystems due to their integral contribution to biogeochemical cycles and biological processes. In marine environments, microorganisms exist as microbial communities in the water column, benthonic substrates, and macroorganisms, where they establish symbiotic interactions and fulfill their ecological roles. Such interactions can have a harmful or beneficial impact on the hosts depending on the emergent properties of the communities, their taxonomic structure, and functionality. To evaluate these features, culture independent approaches like metabarcoding have been developed and have hugely contributed to the characterization of marine microbial diversity. The present study was aimed to explore the structure and metabolic functionality of microbial communities associated to marine hosts at the Serrana Bank, a coral atoll part of the Seaflower Biosphere Reserve (Archipelago of San Andrés, Old Providence and Saint Catalina, Colombia). We found a highly diverse microbial assemblage associated with the corals Siderastrea siderea, Colpophyllia natans, and Orbicella annularis, the sponge Haliclona sp. and sediment from Isla de los Pájaros lagoon. However, the coral Porites astreoides had significantly lower bacterial diversity and a different community composition. Proteobacteria was the most abundant phylum within bacterial communities in the evaluated hosts, except in P. astreoides, where Cyanobacteria was the predominant group. Firmicutes, Actinobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and Gemmatimonadetes were also identified within all microbiomes, but their dominance varied between hosts. Additionally, the most abundant group among the fungi communities associated with O. annularis, S. siderea, and C. natans was Ascomycota, but significant differences between clasess and order were observed among hosts. Finally, functional profiles revealed that the principal microbial functions were focused on membrane transport, carbohydrates, amino acids and energy metabolism, replication, and translation processes. A significant higher metabolic functionality was found in the sponge microbiome in comparison to the coral microbial communities.
first_indexed 2024-12-10T07:00:47Z
format Article
id doaj.art-035959e024eb48bc84a6067871aafe73
institution Directory Open Access Journal
issn 2296-7745
language English
last_indexed 2024-12-10T07:00:47Z
publishDate 2019-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Marine Science
spelling doaj.art-035959e024eb48bc84a6067871aafe732022-12-22T01:58:20ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452019-06-01610.3389/fmars.2019.00338417151Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere ReserveAstrid Catalina Alvarez-Yela0Jeanneth Mosquera-Rendón1Alejandra Noreña-P2Marco Cristancho3Diana López-Alvarez4Centro de Bioinformática y Biología Computacional BIOS, Manizales, ColombiaCentro de Bioinformática y Biología Computacional BIOS, Manizales, ColombiaCentro de Bioinformática y Biología Computacional BIOS, Manizales, ColombiaVicerrectoría de Investigación, Universidad de los Andes, Bogotá, ColombiaCentro de Bioinformática y Biología Computacional BIOS, Manizales, ColombiaMicroorganisms represent nearly 90% of ocean biomass and are fundamental for the functioning and health of marine ecosystems due to their integral contribution to biogeochemical cycles and biological processes. In marine environments, microorganisms exist as microbial communities in the water column, benthonic substrates, and macroorganisms, where they establish symbiotic interactions and fulfill their ecological roles. Such interactions can have a harmful or beneficial impact on the hosts depending on the emergent properties of the communities, their taxonomic structure, and functionality. To evaluate these features, culture independent approaches like metabarcoding have been developed and have hugely contributed to the characterization of marine microbial diversity. The present study was aimed to explore the structure and metabolic functionality of microbial communities associated to marine hosts at the Serrana Bank, a coral atoll part of the Seaflower Biosphere Reserve (Archipelago of San Andrés, Old Providence and Saint Catalina, Colombia). We found a highly diverse microbial assemblage associated with the corals Siderastrea siderea, Colpophyllia natans, and Orbicella annularis, the sponge Haliclona sp. and sediment from Isla de los Pájaros lagoon. However, the coral Porites astreoides had significantly lower bacterial diversity and a different community composition. Proteobacteria was the most abundant phylum within bacterial communities in the evaluated hosts, except in P. astreoides, where Cyanobacteria was the predominant group. Firmicutes, Actinobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and Gemmatimonadetes were also identified within all microbiomes, but their dominance varied between hosts. Additionally, the most abundant group among the fungi communities associated with O. annularis, S. siderea, and C. natans was Ascomycota, but significant differences between clasess and order were observed among hosts. Finally, functional profiles revealed that the principal microbial functions were focused on membrane transport, carbohydrates, amino acids and energy metabolism, replication, and translation processes. A significant higher metabolic functionality was found in the sponge microbiome in comparison to the coral microbial communities.https://www.frontiersin.org/article/10.3389/fmars.2019.00338/fullseaflowermicrobial diversitymarine hostsampliconssymbiotic interactions
spellingShingle Astrid Catalina Alvarez-Yela
Jeanneth Mosquera-Rendón
Alejandra Noreña-P
Marco Cristancho
Diana López-Alvarez
Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
Frontiers in Marine Science
seaflower
microbial diversity
marine hosts
amplicons
symbiotic interactions
title Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
title_full Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
title_fullStr Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
title_full_unstemmed Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
title_short Microbial Diversity Exploration of Marine Hosts at Serrana Bank, a Coral Atoll of the Seaflower Biosphere Reserve
title_sort microbial diversity exploration of marine hosts at serrana bank a coral atoll of the seaflower biosphere reserve
topic seaflower
microbial diversity
marine hosts
amplicons
symbiotic interactions
url https://www.frontiersin.org/article/10.3389/fmars.2019.00338/full
work_keys_str_mv AT astridcatalinaalvarezyela microbialdiversityexplorationofmarinehostsatserranabankacoralatolloftheseaflowerbiospherereserve
AT jeannethmosquerarendon microbialdiversityexplorationofmarinehostsatserranabankacoralatolloftheseaflowerbiospherereserve
AT alejandranorenap microbialdiversityexplorationofmarinehostsatserranabankacoralatolloftheseaflowerbiospherereserve
AT marcocristancho microbialdiversityexplorationofmarinehostsatserranabankacoralatolloftheseaflowerbiospherereserve
AT dianalopezalvarez microbialdiversityexplorationofmarinehostsatserranabankacoralatolloftheseaflowerbiospherereserve