Connectivity maps based analysis of EEG for the advanced diagnosis of schizophrenia attributes.
This article presents a novel connectivity analysis method that is suitable for multi-node networks such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that constituted of 25 healthy and 25...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5648105?pdf=render |
Summary: | This article presents a novel connectivity analysis method that is suitable for multi-node networks such as EEG, MEG or EcOG electrode recordings. Its diagnostic power and ability to interpret brain states in schizophrenia is demonstrated on a set of 50 subjects that constituted of 25 healthy and 25 diagnosed with schizophrenia and treated with medication. The method can also be used for the automatic detection of schizophrenia; it exhibits higher sensitivity than state-of-the-art methods with no false positives. The detection is based on an analysis from a minute long pattern-recognition computer task. Moreover, this connectivity analysis leads naturally to an optimal choice of electrodes and hence to highly statistically significant results that are based on data from only 3-5 electrodes. The method is general and can be used for the diagnosis of other psychiatric conditions, provided an appropriate computer task is devised. |
---|---|
ISSN: | 1932-6203 |