Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment
A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagno...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Diagnostics |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4418/13/7/1269 |
_version_ | 1797608151103569920 |
---|---|
author | Elina Karseeva Ilya Kolokolnikov Ekaterina Medvedeva Elena Savchenko |
author_facet | Elina Karseeva Ilya Kolokolnikov Ekaterina Medvedeva Elena Savchenko |
author_sort | Elina Karseeva |
collection | DOAJ |
description | A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible. The high level of disability and mortality caused by liver diseases makes the development of new liver diagnostic methods very urgent. In this paper, we describe a new joint methodology for studying liver function based on optical densitometry and dynamic light scattering. This will help to diagnose and predict the dynamics of liver function during treatment with greater efficiency, due to including in consideration the individual characteristics of the cardiovascular system and tissue metabolism. In this paper, we present a laboratory model of a combined sensor for optical densitometry and dynamic light scattering. We also developed special software for controlling the sensor and processing the recorded data. Modeling experiments and physical medical studies were carried out to adjust and calibrate the sensor and software. We also assessed the sensor resolution when registering the concentration of dye in the human body and the minimum measured flow rate. |
first_indexed | 2024-03-11T05:39:27Z |
format | Article |
id | doaj.art-036f6b6d9cd44e49b1c9af3100ca35dd |
institution | Directory Open Access Journal |
issn | 2075-4418 |
language | English |
last_indexed | 2024-03-11T05:39:27Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Diagnostics |
spelling | doaj.art-036f6b6d9cd44e49b1c9af3100ca35dd2023-11-17T16:30:13ZengMDPI AGDiagnostics2075-44182023-03-01137126910.3390/diagnostics13071269Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function AssessmentElina Karseeva0Ilya Kolokolnikov1Ekaterina Medvedeva2Elena Savchenko3Higher School of Applied Physics and Space Technologies, Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, RussiaHigher School of Applied Physics and Space Technologies, Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, RussiaHigher School of Applied Physics and Space Technologies, Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, RussiaComputer Information Systems Department, International University of Kyrgyzstan, Bishkek 720010, KyrgyzstanA pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible. The high level of disability and mortality caused by liver diseases makes the development of new liver diagnostic methods very urgent. In this paper, we describe a new joint methodology for studying liver function based on optical densitometry and dynamic light scattering. This will help to diagnose and predict the dynamics of liver function during treatment with greater efficiency, due to including in consideration the individual characteristics of the cardiovascular system and tissue metabolism. In this paper, we present a laboratory model of a combined sensor for optical densitometry and dynamic light scattering. We also developed special software for controlling the sensor and processing the recorded data. Modeling experiments and physical medical studies were carried out to adjust and calibrate the sensor and software. We also assessed the sensor resolution when registering the concentration of dye in the human body and the minimum measured flow rate.https://www.mdpi.com/2075-4418/13/7/1269blood flowcorrelation analysisscatteringsensorsmicrocirculationoptical densitometry |
spellingShingle | Elina Karseeva Ilya Kolokolnikov Ekaterina Medvedeva Elena Savchenko Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment Diagnostics blood flow correlation analysis scattering sensors microcirculation optical densitometry |
title | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_full | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_fullStr | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_full_unstemmed | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_short | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_sort | joint methodology based on optical densitometry and dynamic light scattering for liver function assessment |
topic | blood flow correlation analysis scattering sensors microcirculation optical densitometry |
url | https://www.mdpi.com/2075-4418/13/7/1269 |
work_keys_str_mv | AT elinakarseeva jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT ilyakolokolnikov jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT ekaterinamedvedeva jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT elenasavchenko jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment |