The Role of Pyoluteorin from <i>Pseudomonas protegens</i> Pf-5 in Suppressing the Growth and Pathogenicity of <i>Pantoea ananatis</i> on Maize

The rhizospheric bacterium <i>Pseudomonas protegens</i> Pf-5 can colonize the seed and root surfaces of plants, and can protect them from pathogen infection. Secondary metabolites, including lipopeptides and polyketides produced by Pf-5, are involved in its biocontrol activity. We isolat...

Full description

Bibliographic Details
Main Authors: Qin Gu, Junqing Qiao, Ruoyi Wang, Juan Lu, Zhengqi Wang, Pingping Li, Lulu Zhang, Qurban Ali, Abdur Rashid Khan, Xuewen Gao, Huijun Wu
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/12/6431
Description
Summary:The rhizospheric bacterium <i>Pseudomonas protegens</i> Pf-5 can colonize the seed and root surfaces of plants, and can protect them from pathogen infection. Secondary metabolites, including lipopeptides and polyketides produced by Pf-5, are involved in its biocontrol activity. We isolated a crude extract from Pf-5. It exhibited significant surface activity and strong antibacterial activity against <i>Pantoea ananatis</i> DZ-12, which causes maize brown rot on leaves. HPLC analysis combined with activity tests showed that the polyketide pyoluteorin in the crude extract participated in the suppression of DZ-12 growth, and that the lipopeptide orfamide A was the major biosurfactant in the crude extract. Further studies indicated that the pyoluteorin in the crude extract significantly suppressed the biofilm formation of DZ-12, and it induced the accumulation of reactive oxygen species in DZ-12 cells. Scanning electron microscopy and transmission electron microscopy observation revealed that the crude extract severely damaged the pathogen cells and caused cytoplasmic extravasations and hollowing of the cells. The pathogenicity of DZ-12 on maize leaves was significantly reduced by the crude extract from Pf-5 in a dose-dependent manner. The polyketide pyoluteorin had strong antibacterial activity against DZ-12, and it has the potential for development as an antimicrobial agent.
ISSN:1661-6596
1422-0067