Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia

Graphical Abstract

Bibliographic Details
Main Authors: Anika Schumacher, Nadia Roumans, Timo Rademakers, Virginie Joris, Maria José Eischen-Loges, Martijn van Griensven, Vanessa L.S. LaPointe
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-06-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2022.860138/full
_version_ 1818202195722502144
author Anika Schumacher
Nadia Roumans
Timo Rademakers
Virginie Joris
Maria José Eischen-Loges
Maria José Eischen-Loges
Martijn van Griensven
Vanessa L.S. LaPointe
author_facet Anika Schumacher
Nadia Roumans
Timo Rademakers
Virginie Joris
Maria José Eischen-Loges
Maria José Eischen-Loges
Martijn van Griensven
Vanessa L.S. LaPointe
author_sort Anika Schumacher
collection DOAJ
description Graphical Abstract
first_indexed 2024-12-12T03:05:36Z
format Article
id doaj.art-03746fa0cf4d4e0087dd3953ec8935cc
institution Directory Open Access Journal
issn 2296-4185
language English
last_indexed 2024-12-12T03:05:36Z
publishDate 2022-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Bioengineering and Biotechnology
spelling doaj.art-03746fa0cf4d4e0087dd3953ec8935cc2022-12-22T00:40:31ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852022-06-011010.3389/fbioe.2022.860138860138Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological HypoxiaAnika Schumacher0Nadia Roumans1Timo Rademakers2Virginie Joris3Maria José Eischen-Loges4Maria José Eischen-Loges5Martijn van Griensven6Vanessa L.S. LaPointe7Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsDepartment of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, NetherlandsGraphical Abstracthttps://www.frontiersin.org/articles/10.3389/fbioe.2022.860138/fullkidney organoidhypoxiaVEGF-Aendothelial cellsvascularizationinduced pluripoten stem cells
spellingShingle Anika Schumacher
Nadia Roumans
Timo Rademakers
Virginie Joris
Maria José Eischen-Loges
Maria José Eischen-Loges
Martijn van Griensven
Vanessa L.S. LaPointe
Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
Frontiers in Bioengineering and Biotechnology
kidney organoid
hypoxia
VEGF-A
endothelial cells
vascularization
induced pluripoten stem cells
title Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
title_full Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
title_fullStr Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
title_full_unstemmed Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
title_short Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia
title_sort enhanced microvasculature formation and patterning in ipsc derived kidney organoids cultured in physiological hypoxia
topic kidney organoid
hypoxia
VEGF-A
endothelial cells
vascularization
induced pluripoten stem cells
url https://www.frontiersin.org/articles/10.3389/fbioe.2022.860138/full
work_keys_str_mv AT anikaschumacher enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT nadiaroumans enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT timorademakers enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT virginiejoris enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT mariajoseeischenloges enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT mariajoseeischenloges enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT martijnvangriensven enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia
AT vanessalslapointe enhancedmicrovasculatureformationandpatterninginipscderivedkidneyorganoidsculturedinphysiologicalhypoxia