Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS) and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with...

Full description

Bibliographic Details
Main Authors: Annieke C G van Baar, Andrei Prodan, Camilla D Wahlgren, Steen S Poulsen, Filip K Knop, Albert K Groen, Jacques J Bergman, Max Nieuwdorp, Evgeni Levin
Format: Article
Language:English
Published: Bioscientifica 2018-05-01
Series:Endocrine Connections
Subjects:
Online Access:http://www.endocrineconnections.com/content/7/5/673.full
Description
Summary:Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS) and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven) pathophysiology behind insulin resistance in human obesity.
ISSN:2049-3614
2049-3614