Self-attention negative feedback network for real-time image super-resolution
In the field of real-time image enhancement, image super-resolution (SR) is an important research hotspot. As an image super-resolution method, deep learning can extract more stable and higher level features. However, image super-resolution processing is an ill posed problem. Due to the lack of self...
Huvudupphovsmän: | Xiangbin Liu, Shuqi Chen, Liping Song, Marcin Woźniak, Shuai Liu |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Elsevier
2022-09-01
|
Serie: | Journal of King Saud University: Computer and Information Sciences |
Ämnen: | |
Länkar: | http://www.sciencedirect.com/science/article/pii/S1319157821001816 |
Liknande verk
-
Feature Extraction of 3T3 Fibroblast Microtubule Based on Discrete Wavelet Transform and Lucy–Richardson Deconvolution Methods
av: Haoxin Bai, et al.
Publicerad: (2022-05-01) -
Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
av: Chunmei Fu, et al.
Publicerad: (2021-03-01) -
A New Approach of Image Denoising Based on Adaptive Multi-Resolution Technique
av: Lalit Mohan Satapathy, et al.
Publicerad: (2022-04-01) -
Generating Super Spatial Resolution Products from Sentinel-2 Satellite Images
av: Mohammad Reza Zargar, et al.
Publicerad: (2024-03-01) -
Lightweight Dual Mutual-Feedback Network for Artificial Intelligence in Medical Image Super-Resolution
av: Beibei Wang, et al.
Publicerad: (2022-12-01)