Wind and trophic status explain within and among‐lake variability of algal biomass

Abstract Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within‐lake variation in biomass using high‐frequency chlorophyll fluorescence data from 18 globally distributed lakes. We...

Full description

Bibliographic Details
Main Authors: J. A. Rusak, A. J. Tanentzap, J. L. Klug, K. C. Rose, S. P. Hendricks, E. Jennings, A. Laas, D. Pierson, E. Ryder, R. L. Smyth, D. S. White, L. A. Winslow, R. Adrian, L. Arvola, E. de Eyto, H. Feuchtmayr, M. Honti, V. Istvánovics, I. D. Jones, C. G. McBride, S. R. Schmidt, D. Seekell, P. A. Staehr, G. Zhu
Format: Article
Language:English
Published: Wiley 2018-12-01
Series:Limnology and Oceanography Letters
Online Access:https://doi.org/10.1002/lol2.10093
_version_ 1819176826427146240
author J. A. Rusak
A. J. Tanentzap
J. L. Klug
K. C. Rose
S. P. Hendricks
E. Jennings
A. Laas
D. Pierson
E. Ryder
R. L. Smyth
D. S. White
L. A. Winslow
R. Adrian
L. Arvola
E. de Eyto
H. Feuchtmayr
M. Honti
V. Istvánovics
I. D. Jones
C. G. McBride
S. R. Schmidt
D. Seekell
P. A. Staehr
G. Zhu
author_facet J. A. Rusak
A. J. Tanentzap
J. L. Klug
K. C. Rose
S. P. Hendricks
E. Jennings
A. Laas
D. Pierson
E. Ryder
R. L. Smyth
D. S. White
L. A. Winslow
R. Adrian
L. Arvola
E. de Eyto
H. Feuchtmayr
M. Honti
V. Istvánovics
I. D. Jones
C. G. McBride
S. R. Schmidt
D. Seekell
P. A. Staehr
G. Zhu
author_sort J. A. Rusak
collection DOAJ
description Abstract Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within‐lake variation in biomass using high‐frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high‐frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within‐lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high‐frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.
first_indexed 2024-12-22T21:16:56Z
format Article
id doaj.art-03903431e4304489a3c9948ee5cdb1d9
institution Directory Open Access Journal
issn 2378-2242
language English
last_indexed 2024-12-22T21:16:56Z
publishDate 2018-12-01
publisher Wiley
record_format Article
series Limnology and Oceanography Letters
spelling doaj.art-03903431e4304489a3c9948ee5cdb1d92022-12-21T18:12:19ZengWileyLimnology and Oceanography Letters2378-22422018-12-013640941810.1002/lol2.10093Wind and trophic status explain within and among‐lake variability of algal biomassJ. A. Rusak0A. J. Tanentzap1J. L. Klug2K. C. Rose3S. P. Hendricks4E. Jennings5A. Laas6D. Pierson7E. Ryder8R. L. Smyth9D. S. White10L. A. Winslow11R. Adrian12L. Arvola13E. de Eyto14H. Feuchtmayr15M. Honti16V. Istvánovics17I. D. Jones18C. G. McBride19S. R. Schmidt20D. Seekell21P. A. Staehr22G. Zhu23Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change Dorset Ontario CanadaDepartment of Plant Sciences University of Cambridge Cambridge United KingdomBiology Department Fairfield University Fairfield ConnecticutDepartment of Biological Sciences Rensselaer Polytechnic Institute Troy New YorkHancock Biological Station Murray State University Murray KentuckyCentre for Freshwater and Environmental Studies, Dundalk Institute of Technology Dundalk IrelandChair of Hydrobiology and Fishery Estonian University of Life Sciences Tartu EstoniaErken Laboratory, Department of Ecology and Genetics Uppsala University Uppsala SwedenCentre for Freshwater and Environmental Studies, Dundalk Institute of Technology Dundalk IrelandEnvironmental and Urban Studies Bard College Annandale‐on‐Hudson New YorkHancock Biological Station Murray State University Murray KentuckyDepartment of Biological Sciences Rensselaer Polytechnic Institute Troy New YorkLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin GermanyLammi Biological Station University of Helsinki Lammi FinlandMarine Institute Newport Co. Mayo IrelandCentre for Ecology & Hydrology, Lancaster Environment Centre Lancaster United KingdomMTA‐BME Water Research Group Hungarian Academy of Sciences Budapest HungaryMTA‐BME Water Research Group Hungarian Academy of Sciences Budapest HungaryCentre for Ecology & Hydrology, Lancaster Environment Centre Lancaster United KingdomEnvironmental Research Institute, University of Waikato Hamilton New ZealandLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin GermanyDepartment of Ecology and Environmental Science Umeå University Umeå SwedenDepartment of Biosciences Aarhus University Roskilde DenmarkNanjing Institute of Geography and Limnology Chinese Academy of Sciences Nanjing ChinaAbstract Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within‐lake variation in biomass using high‐frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high‐frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within‐lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high‐frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.https://doi.org/10.1002/lol2.10093
spellingShingle J. A. Rusak
A. J. Tanentzap
J. L. Klug
K. C. Rose
S. P. Hendricks
E. Jennings
A. Laas
D. Pierson
E. Ryder
R. L. Smyth
D. S. White
L. A. Winslow
R. Adrian
L. Arvola
E. de Eyto
H. Feuchtmayr
M. Honti
V. Istvánovics
I. D. Jones
C. G. McBride
S. R. Schmidt
D. Seekell
P. A. Staehr
G. Zhu
Wind and trophic status explain within and among‐lake variability of algal biomass
Limnology and Oceanography Letters
title Wind and trophic status explain within and among‐lake variability of algal biomass
title_full Wind and trophic status explain within and among‐lake variability of algal biomass
title_fullStr Wind and trophic status explain within and among‐lake variability of algal biomass
title_full_unstemmed Wind and trophic status explain within and among‐lake variability of algal biomass
title_short Wind and trophic status explain within and among‐lake variability of algal biomass
title_sort wind and trophic status explain within and among lake variability of algal biomass
url https://doi.org/10.1002/lol2.10093
work_keys_str_mv AT jarusak windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT ajtanentzap windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT jlklug windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT kcrose windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT sphendricks windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT ejennings windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT alaas windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT dpierson windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT eryder windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT rlsmyth windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT dswhite windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT lawinslow windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT radrian windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT larvola windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT edeeyto windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT hfeuchtmayr windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT mhonti windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT vistvanovics windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT idjones windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT cgmcbride windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT srschmidt windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT dseekell windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT pastaehr windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass
AT gzhu windandtrophicstatusexplainwithinandamonglakevariabilityofalgalbiomass