Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors?

Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of...

Full description

Bibliographic Details
Main Authors: Sang-Eun Kim, Ryoichi Mori, Isao Shimokawa
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Nutrients
Subjects:
Online Access:https://www.mdpi.com/2072-6643/12/7/1959
Description
Summary:Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which <i>Foxo1</i> and <i>Foxo3</i> genes were conditionally knocked out in the myeloid cell lineage.
ISSN:2072-6643