Pullout simulation of post installed chemically bonded anchors in UHPFRC

An experimental and numerical study was completed in order to examine the mechanical behaviour of post-installed bonded anchors in ultra-high performance fibre reinforced concrete with a compressive strength higher than 130 MPa. The aim was to analyse the failure mechanisms in static pullout tests a...

Full description

Bibliographic Details
Main Authors: Delhomme Fabien, Brun Michael
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201819911007
Description
Summary:An experimental and numerical study was completed in order to examine the mechanical behaviour of post-installed bonded anchors in ultra-high performance fibre reinforced concrete with a compressive strength higher than 130 MPa. The aim was to analyse the failure mechanisms in static pullout tests and to suggest a simple numerical model, which can be employed in a design stage, to reproduce the global behaviour of the anchor. The experimental observations show that a combined pullout and concrete cone failure occurred for an embedment depth of 40 mm and a steel rod failure for an embedment depth of 100 mm. The numerical model was set up using Abaqus software, by adopting the concrete damage plastic model and a surface-based cohesive behaviour for the interface concrete-anchor. The obtained failure modes and ultimate loads are in good agreement with experimental results. A minimum embedment depth of 50 mm was assessed to prevent a pullout failure of the anchor.
ISSN:2261-236X