Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds

The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022300?viewType=HTML
_version_ 1828137038505836544
author Yanlin Li
Dipen Ganguly
Santu Dey
Arindam Bhattacharyya
author_facet Yanlin Li
Dipen Ganguly
Santu Dey
Arindam Bhattacharyya
author_sort Yanlin Li
collection DOAJ
description The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal η-Ricci solitons on ϵ-Kenmotsu manifolds. Next, we consider gradient conformal η-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal η-Ricci soliton on ϵ-Kenmotsu manifold.
first_indexed 2024-04-11T18:12:37Z
format Article
id doaj.art-039e6542148d40f9975ca3f3ba5b6091
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-11T18:12:37Z
publishDate 2022-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-039e6542148d40f9975ca3f3ba5b60912022-12-22T04:10:03ZengAIMS PressAIMS Mathematics2473-69882022-01-01745408543010.3934/math.2022300Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifoldsYanlin Li0Dipen Ganguly1Santu Dey2Arindam Bhattacharyya31. School of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China2. Department of Mathematics, Jadavpur University, Kolkata 700032, India3. Department of Mathematics, Bidhan Chandra College, Asansol-4, West Bengal 713304, India2. Department of Mathematics, Jadavpur University, Kolkata 700032, IndiaThe present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal η-Ricci solitons on ϵ-Kenmotsu manifolds. Next, we consider gradient conformal η-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal η-Ricci soliton on ϵ-Kenmotsu manifold.https://www.aimspress.com/article/doi/10.3934/math.2022300?viewType=HTMLricci solitonconformal ricci solitonconformal η-ricci solitonϵ-kenmotsu manifoldconcircular curvature tensorcodazzi type ricci tensor
spellingShingle Yanlin Li
Dipen Ganguly
Santu Dey
Arindam Bhattacharyya
Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
AIMS Mathematics
ricci soliton
conformal ricci soliton
conformal η-ricci soliton
ϵ-kenmotsu manifold
concircular curvature tensor
codazzi type ricci tensor
title Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
title_full Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
title_fullStr Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
title_full_unstemmed Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
title_short Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
title_sort conformal η ricci solitons within the framework of indefinite kenmotsu manifolds
topic ricci soliton
conformal ricci soliton
conformal η-ricci soliton
ϵ-kenmotsu manifold
concircular curvature tensor
codazzi type ricci tensor
url https://www.aimspress.com/article/doi/10.3934/math.2022300?viewType=HTML
work_keys_str_mv AT yanlinli conformalēriccisolitonswithintheframeworkofindefinitekenmotsumanifolds
AT dipenganguly conformalēriccisolitonswithintheframeworkofindefinitekenmotsumanifolds
AT santudey conformalēriccisolitonswithintheframeworkofindefinitekenmotsumanifolds
AT arindambhattacharyya conformalēriccisolitonswithintheframeworkofindefinitekenmotsumanifolds