Summary: | Precipitable water vapor (PWV) is an important meteorological factor for predicting extreme weather events such as tropical cyclones, which can be obtained from zenith tropospheric delay (ZTD) by using a conversion. A time difference of ZTD arrival (TDOZA) model was proposed to monitor the movement of tropical cyclones, and the fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting (ERA5)-derived ZTD (ERA5-ZTD) was used to estimate the movement of tropical cyclones based on the model. The global navigation satellite system-derived ZTD and radiosonde data-derived PWV (RS-PWV) were used to test the accuracy of the ERA5-ZTD and analyze the correlation between ZTD and PWV, respectively. The statistics showed that the mean Bias, RMS and STD of the ERA5-ZTD were 6.4 mm, 17.1 mm and 16.5 mm, respectively, and the mean correlation coefficient of the ERA5-ZTD and RS-PWV was 0.951, which indicates that the ZTD can be used to predict weather events instead of PWV. Then, spatiao-temporal characteristics of ZTD during the four tropical cyclone (i.e., Merbok, ROKE, Neast and Hato) periods in 2017 were analyzed, and the result showed that the moving directions of ZTD and the tropical cyclones were consistent. Thus, the ZTD time series over the ERA5 grids around the tropical cyclones’ paths were used to estimate the velocity of the tropical cyclones based on the TDOZA model, when the tropical cyclones are approaching or leaving. Compared with the result from the China Meteorological Administration, the mean absolute and relative deviations of the TDOZA model-derived velocity were 2.55 km/h and 10.0%, respectively. These results suggest that ZTD can be used as a new supplementary meteorological parameter for monitoring tropical cyclone events.
|