Co-Targeting the EGFR and PI3K/Akt Pathway to Overcome Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma: What about Autophagy?

Resistance to EGFR-targeted therapy is a major obstacle on the road to effective treatment options for head and neck cancers. During the search for underlying mechanisms and regulators of this resistance, there were several indications that EGFR-targeted therapy resistance is (partially) mediated by...

Full description

Bibliographic Details
Main Authors: Hannah Zaryouh, Jinthe Van Loenhout, Marc Peeters, Jan Baptist Vermorken, Filip Lardon, An Wouters
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/14/24/6128
Description
Summary:Resistance to EGFR-targeted therapy is a major obstacle on the road to effective treatment options for head and neck cancers. During the search for underlying mechanisms and regulators of this resistance, there were several indications that EGFR-targeted therapy resistance is (partially) mediated by aberrant signaling of the PI3K/Akt pathway. Genomic alterations in and/or overexpression of major components of the PI3K/Akt pathway are common in HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising targets in the search for novel therapeutic strategies overcoming resistance to EGFR inhibitors. As both the EGFR/Ras/Raf/MAPK and the PI3K/Akt pathway are involved in autophagy, combinations of EGFR and PI3K/Akt pathway inhibitors can induce an autophagic response in tumor cells. This activation of autophagy can be seen as a “double-edge sword”, depending on the cellular context. Autophagy is largely known as a cytoprotective mechanism, but it can also be a mechanism of programmed (autophagic) cell death. The activation of autophagy during anti-cancer treatment is, therefore, not necessarily a bad sign. However, in HNSCC, the role of therapy-induced autophagy as an anti-tumor mechanism is still largely unclear. Further research is warranted to understand the potential of combination treatments targeting both the EGFR and PI3K/Akt pathway.
ISSN:2072-6694