Application of an efficient Bayesian discretization method to biomedical data

<p>Abstract</p> <p>Background</p> <p>Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD) method for optimal discretization of variables that runs e...

Full description

Bibliographic Details
Main Authors: Gopalakrishnan Vanathi, Visweswaran Shyam, Lustgarten Jonathan L, Cooper Gregory F
Format: Article
Language:English
Published: BMC 2011-07-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/12/309
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD) method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI) discretization method, which is commonly used for discretization.</p> <p>Results</p> <p>On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI.</p> <p>Conclusions</p> <p>On a range of biomedical datasets, a Bayesian discretization method (EBD) yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.</p>
ISSN:1471-2105