Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3
AbstractBackground Protocatechuic aldehyde (PA) extracts from S. miltiorrhiza, which anti-oxidative and anti-inflammatory functions have been certified in diverse diseases. Nonetheless, the influence of PA in spinal cord injury (SCI) is still hazy. The research probed the function of PA in hydrogen...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2020-01-01
|
Series: | Artificial Cells, Nanomedicine, and Biotechnology |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/21691401.2020.1725535 |
_version_ | 1797788776050720768 |
---|---|
author | Zhiwei Zhong Xiaoyuan Yao Min Luo Mei Li Lina Dong Ziyan Zhang Rui Jiang |
author_facet | Zhiwei Zhong Xiaoyuan Yao Min Luo Mei Li Lina Dong Ziyan Zhang Rui Jiang |
author_sort | Zhiwei Zhong |
collection | DOAJ |
description | AbstractBackground Protocatechuic aldehyde (PA) extracts from S. miltiorrhiza, which anti-oxidative and anti-inflammatory functions have been certified in diverse diseases. Nonetheless, the influence of PA in spinal cord injury (SCI) is still hazy. The research probed the function of PA in hydrogen peroxide (H2O2)-damaged PC12 cells.Methods The disparate dosages of H2O2 (0–400 µM) or PA (0–2 µM) were applied for stimulating PC12 cells, and subsequently cell viability, apoptosis, apoptosis- and autophagy-correlative factors were evaluated. After pc-MEG3 transfection, functions of MEG3 overexpression in H2O2 and/or PA-managed PC12 cells were reassessed. Western blot was conducted to determine Wnt/β-catenin and PTEN/PI3K/AKT pathways.Results H2O2 stimulation clearly triggered PC12 cell damage via prohibiting cell viability and accelerating apoptosis and autophagy. But, PA management mitigated H2O2-triggered PC12 cells damage. Down-regulated MEG3 triggered by PA was presented in H2O2-managed cells. What’s more, overexpressed MEG3 dramatically overturned the influences of PA in H2O2-damaged PC12 cells. Beyond that, PA activated Wnt/β-catenin and PTEN/PI3K/AKT via repression of MEG3 in H2O2-managed PC12 cells.Conclusions The results disclosed the protective impacts of PA on PC12 cells to resist H2O2-provoked damage. MEG3, Wnt/β-catenin and PTEN/PI3K/AKT pathways joined in adjusting the activity of PA in H2O2-damaged PC12 cells. |
first_indexed | 2024-03-13T01:41:20Z |
format | Article |
id | doaj.art-03d8c22ca3db4897b3aa341b76abdcb8 |
institution | Directory Open Access Journal |
issn | 2169-1401 2169-141X |
language | English |
last_indexed | 2024-03-13T01:41:20Z |
publishDate | 2020-01-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | Artificial Cells, Nanomedicine, and Biotechnology |
spelling | doaj.art-03d8c22ca3db4897b3aa341b76abdcb82023-07-03T14:04:56ZengTaylor & Francis GroupArtificial Cells, Nanomedicine, and Biotechnology2169-14012169-141X2020-01-0148160260910.1080/21691401.2020.1725535Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3Zhiwei Zhong0Xiaoyuan Yao1Min Luo2Mei Li3Lina Dong4Ziyan Zhang5Rui Jiang6Department of Pain, China-Japan Union Hospital of Jilin University, Jilin, ChinaDepartment of Pathology, Changchun Medical College, Jilin, ChinaDepartment of Pain, China-Japan Union Hospital of Jilin University, Jilin, ChinaDepartment of Medical Insurance Management, China-Japan Union Hospital of Jilin University, Jilin, ChinaDepartment of Pain, China-Japan Union Hospital of Jilin University, Jilin, ChinaDepartment of Orthopedics, The Second Hospital of Jilin University, Jilin, ChinaDepartment of Orthopedics, China-Japan Union Hospital of Jilin University, Jilin, ChinaAbstractBackground Protocatechuic aldehyde (PA) extracts from S. miltiorrhiza, which anti-oxidative and anti-inflammatory functions have been certified in diverse diseases. Nonetheless, the influence of PA in spinal cord injury (SCI) is still hazy. The research probed the function of PA in hydrogen peroxide (H2O2)-damaged PC12 cells.Methods The disparate dosages of H2O2 (0–400 µM) or PA (0–2 µM) were applied for stimulating PC12 cells, and subsequently cell viability, apoptosis, apoptosis- and autophagy-correlative factors were evaluated. After pc-MEG3 transfection, functions of MEG3 overexpression in H2O2 and/or PA-managed PC12 cells were reassessed. Western blot was conducted to determine Wnt/β-catenin and PTEN/PI3K/AKT pathways.Results H2O2 stimulation clearly triggered PC12 cell damage via prohibiting cell viability and accelerating apoptosis and autophagy. But, PA management mitigated H2O2-triggered PC12 cells damage. Down-regulated MEG3 triggered by PA was presented in H2O2-managed cells. What’s more, overexpressed MEG3 dramatically overturned the influences of PA in H2O2-damaged PC12 cells. Beyond that, PA activated Wnt/β-catenin and PTEN/PI3K/AKT via repression of MEG3 in H2O2-managed PC12 cells.Conclusions The results disclosed the protective impacts of PA on PC12 cells to resist H2O2-provoked damage. MEG3, Wnt/β-catenin and PTEN/PI3K/AKT pathways joined in adjusting the activity of PA in H2O2-damaged PC12 cells.https://www.tandfonline.com/doi/10.1080/21691401.2020.1725535Spinal cord injuryprotocatechuic aldehydehydrogen peroxideWnt/β-cateninPTEN/PI3K/AKT |
spellingShingle | Zhiwei Zhong Xiaoyuan Yao Min Luo Mei Li Lina Dong Ziyan Zhang Rui Jiang Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 Artificial Cells, Nanomedicine, and Biotechnology Spinal cord injury protocatechuic aldehyde hydrogen peroxide Wnt/β-catenin PTEN/PI3K/AKT |
title | Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 |
title_full | Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 |
title_fullStr | Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 |
title_full_unstemmed | Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 |
title_short | Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3 |
title_sort | protocatechuic aldehyde mitigates hydrogen peroxide triggered pc12 cell damage by down regulating meg3 |
topic | Spinal cord injury protocatechuic aldehyde hydrogen peroxide Wnt/β-catenin PTEN/PI3K/AKT |
url | https://www.tandfonline.com/doi/10.1080/21691401.2020.1725535 |
work_keys_str_mv | AT zhiweizhong protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT xiaoyuanyao protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT minluo protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT meili protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT linadong protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT ziyanzhang protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 AT ruijiang protocatechuicaldehydemitigateshydrogenperoxidetriggeredpc12celldamagebydownregulatingmeg3 |