A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes
Traditional similarity-based methods generally ignore the diversity of equipment fault modes, the difference in degradation rates, and the inconsistency among monitoring data lengths. Thus, a similarity-based multi-scale ensemble method in multiple fault modes (MFM-MSEN) is proposed to improve remai...
第一著者: | SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng |
---|---|
フォーマット: | 論文 |
言語: | zho |
出版事項: |
Editorial Office of Journal of Shanghai Jiao Tong University
2022-05-01
|
シリーズ: | Shanghai Jiaotong Daxue xuebao |
主題: | |
オンライン・アクセス: | http://xuebao.sjtu.edu.cn/article/2022/1006-2467/1006-2467-56-5-564.shtml |
類似資料
-
An Optimal Stacking Ensemble for Remaining Useful Life Estimation of Systems Under Multi-Operating Conditions
著者:: Fei Li, 等
出版事項: (2020-01-01) -
A method for predicting the remaining useful life of shearer bearings based on improved similarity model
著者:: LI Xiaokun, 等
出版事項: (2023-05-01) -
A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures
著者:: Bo Wu, 等
出版事項: (2022-06-01) -
A Robust Hybrid Filtering Method for Accurate Battery Remaining Useful Life Prediction
著者:: Xifeng Li, 等
出版事項: (2019-01-01) -
A Novel RUL-Centric Data Augmentation Method for Predicting the Remaining Useful Life of Bearings
著者:: Miao He, 等
出版事項: (2024-10-01)