A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes
Traditional similarity-based methods generally ignore the diversity of equipment fault modes, the difference in degradation rates, and the inconsistency among monitoring data lengths. Thus, a similarity-based multi-scale ensemble method in multiple fault modes (MFM-MSEN) is proposed to improve remai...
Главный автор: | SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng |
---|---|
Формат: | Статья |
Язык: | zho |
Опубликовано: |
Editorial Office of Journal of Shanghai Jiao Tong University
2022-05-01
|
Серии: | Shanghai Jiaotong Daxue xuebao |
Предметы: | |
Online-ссылка: | http://xuebao.sjtu.edu.cn/article/2022/1006-2467/1006-2467-56-5-564.shtml |
Схожие документы
-
A method for predicting the remaining useful life of shearer bearings based on improved similarity model
по: LI Xiaokun, и др.
Опубликовано: (2023-05-01) -
A Novel Method for Remaining Useful Life Prediction of Bearing Based on Spectrum Image Similarity Measures
по: Bo Wu, и др.
Опубликовано: (2022-06-01) -
A Novel RUL-Centric Data Augmentation Method for Predicting the Remaining Useful Life of Bearings
по: Miao He, и др.
Опубликовано: (2024-10-01) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
по: Tiago Gaspar da Rosa, и др.
Опубликовано: (2022-12-01) -
Remaining Useful Life Prediction Method Enhanced by Data Augmentation and Similarity Fusion
по: Huaqing Wang, и др.
Опубликовано: (2024-06-01)