A Novel Antibacterial Titanium Modification with a Sustained Release of Pac-525

For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid–alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-...

Full description

Bibliographic Details
Main Authors: Yuzhu He, Yuanyuan Li, Enjun Zuo, Songling Chai, Xiang Ren, Tao Fei, Guowu Ma, Xiumei Wang, Huiying Liu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/12/3306
Description
Summary:For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid–alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-co- glycolic acid) (PLGA) microsphere layer as a sustained-release system. Hydroxyapatite (HA) in mineralization layer was primarily prepared on the Ti followed by the antibacterial coating of Pac-525 loaded by PLGA microspheres. After observing the antimicrobial peptides distributed uniformly on the titanium surface, the release assay showed that the release of Pac-525 from Pac@PLGA MS/HA coated Ti provided a large initial burst followed by a slow release at a flat rate. Pac@PLGA MS/HA coated Ti exhibited a strong cytotoxicity to both Gram-negative bacteria (<i>Escherichia coli</i>) and Gram-positive bacteria (<i>Staphylococcus aureus</i>). In addition, Pac@PLGA MS/HA coated Ti did not affect the growth and adhesion of the osteoblast-like cell line, MC3T3-E1. These data suggested that a bionic mineralized composite coating with long-term antimicrobial activity was successfully prepared.
ISSN:2079-4991