Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin

The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data mat...

Full description

Bibliographic Details
Main Authors: Jean Berthelet, Momeneh Foroutan, Dharmesh D. Bhuva, Holly J. Whitfield, Farrah El-Saafin, Joseph Cursons, Antonin Serrano, Michal Merdas, Elgene Lim, Emmanuelle Charafe-Jauffret, Christophe Ginestier, Matthias Ernst, Frédéric Hollande, Robin L. Anderson, Bhupinder Pal, Belinda Yeo, Melissa J. Davis, Delphine Merino
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/14/10/2404
_version_ 1797501014922756096
author Jean Berthelet
Momeneh Foroutan
Dharmesh D. Bhuva
Holly J. Whitfield
Farrah El-Saafin
Joseph Cursons
Antonin Serrano
Michal Merdas
Elgene Lim
Emmanuelle Charafe-Jauffret
Christophe Ginestier
Matthias Ernst
Frédéric Hollande
Robin L. Anderson
Bhupinder Pal
Belinda Yeo
Melissa J. Davis
Delphine Merino
author_facet Jean Berthelet
Momeneh Foroutan
Dharmesh D. Bhuva
Holly J. Whitfield
Farrah El-Saafin
Joseph Cursons
Antonin Serrano
Michal Merdas
Elgene Lim
Emmanuelle Charafe-Jauffret
Christophe Ginestier
Matthias Ernst
Frédéric Hollande
Robin L. Anderson
Bhupinder Pal
Belinda Yeo
Melissa J. Davis
Delphine Merino
author_sort Jean Berthelet
collection DOAJ
description The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.
first_indexed 2024-03-10T03:12:11Z
format Article
id doaj.art-03fba90710854702b0036094e42aa149
institution Directory Open Access Journal
issn 2072-6694
language English
last_indexed 2024-03-10T03:12:11Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Cancers
spelling doaj.art-03fba90710854702b0036094e42aa1492023-11-23T10:22:41ZengMDPI AGCancers2072-66942022-05-011410240410.3390/cancers14102404Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to CisplatinJean Berthelet0Momeneh Foroutan1Dharmesh D. Bhuva2Holly J. Whitfield3Farrah El-Saafin4Joseph Cursons5Antonin Serrano6Michal Merdas7Elgene Lim8Emmanuelle Charafe-Jauffret9Christophe Ginestier10Matthias Ernst11Frédéric Hollande12Robin L. Anderson13Bhupinder Pal14Belinda Yeo15Melissa J. Davis16Delphine Merino17Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, AustraliaBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, AustraliaBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaGarvan Institute of Medical Research, Darlinghurst, NSW 2010, AustraliaCRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Epithelial Stem Laboratory, Equipe Labellisée LIGUE Contre le Cancer, 13009 Marseille, FranceCRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Epithelial Stem Laboratory, Equipe Labellisée LIGUE Contre le Cancer, 13009 Marseille, FranceOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaVictorian Comprehensive Cancer Centre, The University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaBioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, AustraliaOlivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, AustraliaThe development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.https://www.mdpi.com/2072-6694/14/10/2404breast cancerpharmacogenomicspredictive modelingdrug sensitivityprecision medicinecisplatin
spellingShingle Jean Berthelet
Momeneh Foroutan
Dharmesh D. Bhuva
Holly J. Whitfield
Farrah El-Saafin
Joseph Cursons
Antonin Serrano
Michal Merdas
Elgene Lim
Emmanuelle Charafe-Jauffret
Christophe Ginestier
Matthias Ernst
Frédéric Hollande
Robin L. Anderson
Bhupinder Pal
Belinda Yeo
Melissa J. Davis
Delphine Merino
Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
Cancers
breast cancer
pharmacogenomics
predictive modeling
drug sensitivity
precision medicine
cisplatin
title Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
title_full Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
title_fullStr Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
title_full_unstemmed Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
title_short Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
title_sort computational screening of anti cancer drugs identifies a new brca independent gene expression signature to predict breast cancer sensitivity to cisplatin
topic breast cancer
pharmacogenomics
predictive modeling
drug sensitivity
precision medicine
cisplatin
url https://www.mdpi.com/2072-6694/14/10/2404
work_keys_str_mv AT jeanberthelet computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT momenehforoutan computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT dharmeshdbhuva computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT hollyjwhitfield computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT farrahelsaafin computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT josephcursons computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT antoninserrano computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT michalmerdas computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT elgenelim computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT emmanuellecharafejauffret computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT christopheginestier computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT matthiasernst computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT frederichollande computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT robinlanderson computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT bhupinderpal computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT belindayeo computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT melissajdavis computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin
AT delphinemerino computationalscreeningofanticancerdrugsidentifiesanewbrcaindependentgeneexpressionsignaturetopredictbreastcancersensitivitytocisplatin