Fixed Points of Maps of a Nonaspherical Wedge

<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial g...

Full description

Bibliographic Details
Main Authors: Merrill Keith, Brown RobertF, Khamsemanan Nirattaya, Ericksen Adam, Kim SeungWon
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2009/531037
_version_ 1818718415028748288
author Merrill Keith
Brown RobertF
Khamsemanan Nirattaya
Ericksen Adam
Kim SeungWon
author_facet Merrill Keith
Brown RobertF
Khamsemanan Nirattaya
Ericksen Adam
Kim SeungWon
author_sort Merrill Keith
collection DOAJ
description <p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of <inline-formula> <graphic file="1687-1812-2009-531037-i2.gif"/></inline-formula>.</p>
first_indexed 2024-12-17T19:50:41Z
format Article
id doaj.art-0403f84507c0436bb5bdf41d15c24869
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-17T19:50:41Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-0403f84507c0436bb5bdf41d15c248692022-12-21T21:34:43ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091531037Fixed Points of Maps of a Nonaspherical WedgeMerrill KeithBrown RobertFKhamsemanan NirattayaEricksen AdamKim SeungWon<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of <inline-formula> <graphic file="1687-1812-2009-531037-i2.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2009/531037
spellingShingle Merrill Keith
Brown RobertF
Khamsemanan Nirattaya
Ericksen Adam
Kim SeungWon
Fixed Points of Maps of a Nonaspherical Wedge
Fixed Point Theory and Applications
title Fixed Points of Maps of a Nonaspherical Wedge
title_full Fixed Points of Maps of a Nonaspherical Wedge
title_fullStr Fixed Points of Maps of a Nonaspherical Wedge
title_full_unstemmed Fixed Points of Maps of a Nonaspherical Wedge
title_short Fixed Points of Maps of a Nonaspherical Wedge
title_sort fixed points of maps of a nonaspherical wedge
url http://www.fixedpointtheoryandapplications.com/content/2009/531037
work_keys_str_mv AT merrillkeith fixedpointsofmapsofanonasphericalwedge
AT brownrobertf fixedpointsofmapsofanonasphericalwedge
AT khamsemanannirattaya fixedpointsofmapsofanonasphericalwedge
AT ericksenadam fixedpointsofmapsofanonasphericalwedge
AT kimseungwon fixedpointsofmapsofanonasphericalwedge