Fixed Points of Maps of a Nonaspherical Wedge
<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial g...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2009/531037 |
_version_ | 1818718415028748288 |
---|---|
author | Merrill Keith Brown RobertF Khamsemanan Nirattaya Ericksen Adam Kim SeungWon |
author_facet | Merrill Keith Brown RobertF Khamsemanan Nirattaya Ericksen Adam Kim SeungWon |
author_sort | Merrill Keith |
collection | DOAJ |
description | <p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of <inline-formula> <graphic file="1687-1812-2009-531037-i2.gif"/></inline-formula>.</p> |
first_indexed | 2024-12-17T19:50:41Z |
format | Article |
id | doaj.art-0403f84507c0436bb5bdf41d15c24869 |
institution | Directory Open Access Journal |
issn | 1687-1820 1687-1812 |
language | English |
last_indexed | 2024-12-17T19:50:41Z |
publishDate | 2009-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Fixed Point Theory and Applications |
spelling | doaj.art-0403f84507c0436bb5bdf41d15c248692022-12-21T21:34:43ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091531037Fixed Points of Maps of a Nonaspherical WedgeMerrill KeithBrown RobertFKhamsemanan NirattayaEricksen AdamKim SeungWon<p>Abstract</p> <p>Let <inline-formula> <graphic file="1687-1812-2009-531037-i1.gif"/></inline-formula> be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of <inline-formula> <graphic file="1687-1812-2009-531037-i2.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2009/531037 |
spellingShingle | Merrill Keith Brown RobertF Khamsemanan Nirattaya Ericksen Adam Kim SeungWon Fixed Points of Maps of a Nonaspherical Wedge Fixed Point Theory and Applications |
title | Fixed Points of Maps of a Nonaspherical Wedge |
title_full | Fixed Points of Maps of a Nonaspherical Wedge |
title_fullStr | Fixed Points of Maps of a Nonaspherical Wedge |
title_full_unstemmed | Fixed Points of Maps of a Nonaspherical Wedge |
title_short | Fixed Points of Maps of a Nonaspherical Wedge |
title_sort | fixed points of maps of a nonaspherical wedge |
url | http://www.fixedpointtheoryandapplications.com/content/2009/531037 |
work_keys_str_mv | AT merrillkeith fixedpointsofmapsofanonasphericalwedge AT brownrobertf fixedpointsofmapsofanonasphericalwedge AT khamsemanannirattaya fixedpointsofmapsofanonasphericalwedge AT ericksenadam fixedpointsofmapsofanonasphericalwedge AT kimseungwon fixedpointsofmapsofanonasphericalwedge |