Optimal Location Allocation Strategy of Gas-fired Unit in Transmission Network
The gas-fired generation has recently become an important power source for power systems. The increasing integration of gas-fired units (GFUs) brings a problem of location allocation strategy for power system planners. This paper proposes a bi-level maximum-minimum optimal placement model of GFUs to...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | Journal of Modern Power Systems and Clean Energy |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9018471/ |
Summary: | The gas-fired generation has recently become an important power source for power systems. The increasing integration of gas-fired units (GFUs) brings a problem of location allocation strategy for power system planners. This paper proposes a bi-level maximum-minimum optimal placement model of GFUs to improve the static voltage stability in the transmission network. In the first stage, the locations of installed GFUs are optimized to improve the static voltage stability margin. The optimal installed capacity of GFUs is determined to minimize the operation costs and power losses in the second stage. The proposed mixed-integer nonlinear programming (MINLP) model is solved by second-order cone programming relaxations. Numerical results in the IEEE 118-bus test system demonstrate the effectiveness of the proposed method and the static voltage stability can be improved. |
---|---|
ISSN: | 2196-5420 |