Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spina...

Full description

Bibliographic Details
Main Authors: Marta Rocha Araujo, Pablo Herthel Carvalho, Taís Silva de Paula, Bárbara Silva Okano, Ricardo Junqueira Del Carlo, Rômulo Dias Novaes, Daise Nunes Queiroz da Cunha, Clóvis Andrade Neves
Format: Article
Language:English
Published: Universidade Estadual de Londrina 2016-06-01
Series:Semina: Ciências Agrárias
Subjects:
Online Access:http://www.uel.br/revistas/uel/index.php/semagrarias/article/view/21596
Description
Summary:Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI) with and without mesenchymal stem cells (MSC), to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV). Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1), decreased immunoreactivity of astrocytes (GFAP+) and greater activation of endogenous stem cells (nestin+) in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.
ISSN:1676-546X
1679-0359