A Mathematical Programming for a Special Case of 2E-LRP in Cash-In-Transit Sector Having Rich Variants

In this article, we propose a special case of two-echelon location-routing problem (2E-LRP) in cash-in-transit (CIT) sector. To tackle this realistic problem and to make the model applicable, a rich LRP considering several existing real-life variants and characteristics named BO-2E-PCLRPSD-TW includ...

Full description

Bibliographic Details
Main Authors: alireza fallah-tafti, Mohammad Ali Vahdat Zad
Format: Article
Language:English
Published: Iran University of Science & Technology 2018-06-01
Series:International Journal of Industrial Engineering and Production Research
Subjects:
Online Access:http://ijiepr.iust.ac.ir/article-1-777-en.html
Description
Summary:In this article, we propose a special case of two-echelon location-routing problem (2E-LRP) in cash-in-transit (CIT) sector. To tackle this realistic problem and to make the model applicable, a rich LRP considering several existing real-life variants and characteristics named BO-2E-PCLRPSD-TW including different objective functions, multiple echelons, multiple periods, capacitated vehicles, distribution centers and automated teller machines (ATMs), different type of vehicles in each echelon, single-depot with different time windows is presented. Since, routing plans in the CIT sector ought to be safe and efficient, we consider the minimization of total transportation risk and cost simultaneously as objective functions. Then, we formulate such complex problem in mathematical mixed integer linear programming (MMILP). To validate the presented model and the formulation and to solve the problem, the latest version of ε-constraint method namely AUGMECON2 is applied. This method is especially efficient for solving multi objective integer programing (MOIP) problems and provides the exact Pareto fronts. Results substantiate the suitability of the model and the formulation.
ISSN:2008-4889
2345-363X