APPLYING ARTIFICIAL INTELLIGENCE TO DETECT RETINAL DISEASES

Vision and eye health are one of the most crucial things in human life, it needs to be preserved to maintain the life of the individuals. Eye diseases such as CNV, DRUSEN, AMD, and DME are mainly caused due to the damages of the retina, and since the retina is damaged and discovered at late stages,...

Full description

Bibliographic Details
Main Authors: Haitam Ettazi, Najat Rafalia, Jaafar Abouchabaka
Format: Article
Language:English
Published: University of Kragujevac 2023-06-01
Series:Proceedings on Engineering Sciences
Subjects:
Online Access:http://pesjournal.net/journal/v5-n2/16.pdf
Description
Summary:Vision and eye health are one of the most crucial things in human life, it needs to be preserved to maintain the life of the individuals. Eye diseases such as CNV, DRUSEN, AMD, and DME are mainly caused due to the damages of the retina, and since the retina is damaged and discovered at late stages, there is almost no chance to reverse vision and cure it, which means that the patient will lose the power of vision partially and maybe entirely. Optical Coherence Tomography is an advanced scanning device that can perform non-invasive cross-sectional imaging of internal structures in biological tissues by measuring their optical reflections. This will help the ophthalmologists to take a clear look on the back of the eye and determine at early stages the damage caused to the retina, macula, and optic nerve. The aim of this study is to propose a novel classification model based on deep learning and transfer learning to automatically classify the different retinal diseases using retinal images obtained from Optical Coherence Tomography (OCT) device. We propose a deep CNN architecture and compared the obtained results with pre-trained models such as Inception V3 and VGG-16, our proposed CNN architecture gave an accuracy of 98.96% and Inception V3 model gave accuracy up to 99.27% on the test set.
ISSN:2620-2832
2683-4111