Computational tools for genomic data de-identification: facilitating data protection law compliance

In this opinion piece, we discuss why computational tools to limit the identifiability of genomic data are a promising avenue for privacy-preservation and legal compliance. Even where these technologies do not eliminate all residual risk of individual identification, the law may still consider such...

Full description

Bibliographic Details
Main Authors: Alexander Bernier, Hanshi Liu, Bartha Maria Knoppers
Format: Article
Language:English
Published: Nature Portfolio 2021-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-27219-2
_version_ 1818719034845167616
author Alexander Bernier
Hanshi Liu
Bartha Maria Knoppers
author_facet Alexander Bernier
Hanshi Liu
Bartha Maria Knoppers
author_sort Alexander Bernier
collection DOAJ
description In this opinion piece, we discuss why computational tools to limit the identifiability of genomic data are a promising avenue for privacy-preservation and legal compliance. Even where these technologies do not eliminate all residual risk of individual identification, the law may still consider such data anonymised.
first_indexed 2024-12-17T20:00:32Z
format Article
id doaj.art-042e5e2b86a747b5a4ba90e724c1b108
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-17T20:00:32Z
publishDate 2021-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-042e5e2b86a747b5a4ba90e724c1b1082022-12-21T21:34:29ZengNature PortfolioNature Communications2041-17232021-11-011211310.1038/s41467-021-27219-2Computational tools for genomic data de-identification: facilitating data protection law complianceAlexander Bernier0Hanshi Liu1Bartha Maria Knoppers2Centre of Genomics and Policy, McGill University, Faculty of MedicineCentre of Genomics and Policy, McGill University, Faculty of MedicineCentre of Genomics and Policy, McGill University, Faculty of MedicineIn this opinion piece, we discuss why computational tools to limit the identifiability of genomic data are a promising avenue for privacy-preservation and legal compliance. Even where these technologies do not eliminate all residual risk of individual identification, the law may still consider such data anonymised.https://doi.org/10.1038/s41467-021-27219-2
spellingShingle Alexander Bernier
Hanshi Liu
Bartha Maria Knoppers
Computational tools for genomic data de-identification: facilitating data protection law compliance
Nature Communications
title Computational tools for genomic data de-identification: facilitating data protection law compliance
title_full Computational tools for genomic data de-identification: facilitating data protection law compliance
title_fullStr Computational tools for genomic data de-identification: facilitating data protection law compliance
title_full_unstemmed Computational tools for genomic data de-identification: facilitating data protection law compliance
title_short Computational tools for genomic data de-identification: facilitating data protection law compliance
title_sort computational tools for genomic data de identification facilitating data protection law compliance
url https://doi.org/10.1038/s41467-021-27219-2
work_keys_str_mv AT alexanderbernier computationaltoolsforgenomicdatadeidentificationfacilitatingdataprotectionlawcompliance
AT hanshiliu computationaltoolsforgenomicdatadeidentificationfacilitatingdataprotectionlawcompliance
AT barthamariaknoppers computationaltoolsforgenomicdatadeidentificationfacilitatingdataprotectionlawcompliance