High-Performance Lightweight Fall Detection with an Improved YOLOv5s Algorithm

The aging population has drastically increased in the past two decades, stimulating the development of devices for healthcare and medical purposes. As one of the leading potential risks, the injuries caused by accidental falls at home are hazardous to the health (and even lifespan) of elderly people...

Full description

Bibliographic Details
Main Authors: Yuanpeng Wang, Zhaozhan Chi, Meng Liu, Guangxian Li, Songlin Ding
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/11/8/818
Description
Summary:The aging population has drastically increased in the past two decades, stimulating the development of devices for healthcare and medical purposes. As one of the leading potential risks, the injuries caused by accidental falls at home are hazardous to the health (and even lifespan) of elderly people. In this paper, an improved YOLOv5s algorithm is proposed, aiming to improve the efficiency and accuracy of lightweight fall detection via the following modifications that elevate its accuracy and speed: first, a k-means++ clustering algorithm was applied to increase the accuracy of the anchor boxes; the backbone network was replaced with a lightweight ShuffleNetV2 network to embed simplified devices with limited computing ability; an SE attention mechanism module was added to the last layer of the backbone to improve the feature extraction capability; the GIOU loss function was replaced by a SIOU loss function to increase the accuracy of detection and the training speed. The results of testing show that the mAP of the improved algorithm was improved by 3.5%, the model size was reduced by 75%, and the time consumed for computation was reduced by 79.4% compared with the conventional YOLOv5s. The algorithm proposed in this paper has higher detection accuracy and detection speed. It is suitable for deployment in embedded devices with limited performance and with lower cost.
ISSN:2075-1702