New Diamond-<i>α</i> Steffensen-Type Inequalities for Convex Functions over General Time Scale Measure Spaces

In this paper, we extend some Steffensen-type inequalities to time scales by using the diamond-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula&g...

Full description

Bibliographic Details
Main Author: Ksenija Smoljak Kalamir
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/7/323
Description
Summary:In this paper, we extend some Steffensen-type inequalities to time scales by using the diamond-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-dynamic integral. Further, we prove some new Steffensen-type inequalities for convex functions utilizing positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-finite measures in time scale calculus. Moreover, as a special case, we obtain these inequalities for the delta and the nabla integral. By using the relation between calculus on time scales <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula> and differential calculus on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>, we obtain already-known Steffensen-type inequalities.
ISSN:2075-1680