Design and Evaluation of a New Machine Learning Framework for IoT and Embedded Devices

Low-cost, high-performance embedded devices are proliferating and a plethora of new platforms are available on the market. Some of them either have embedded GPUs or the possibility to be connected to external Machine Learning (ML) algorithm hardware accelerators. These enhanced hardware features ena...

Full description

Bibliographic Details
Main Authors: Gianluca Cornetta, Abdellah Touhafi
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/5/600
Description
Summary:Low-cost, high-performance embedded devices are proliferating and a plethora of new platforms are available on the market. Some of them either have embedded GPUs or the possibility to be connected to external Machine Learning (ML) algorithm hardware accelerators. These enhanced hardware features enable new applications in which AI-powered smart objects can effectively and pervasively run in real-time distributed ML algorithms, shifting part of the raw data analysis and processing from cloud or edge to the device itself. In such context, Artificial Intelligence (AI) can be considered as the backbone of the next generation of Internet of the Things (IoT) devices, which will no longer merely be data collectors and forwarders, but really “smart” devices with built-in data wrangling and data analysis features that leverage lightweight machine learning algorithms to make autonomous decisions on the field. This work thoroughly reviews and analyses the most popular ML algorithms, with particular emphasis on those that are more suitable to run on resource-constrained embedded devices. In addition, several machine learning algorithms have been built on top of a custom multi-dimensional array library. The designed framework has been evaluated and its performance stressed on Raspberry Pi III- and IV-embedded computers.
ISSN:2079-9292