Structural stability of DNA origami nanostructures under application-specific conditions

With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly...

Full description

Bibliographic Details
Main Authors: Saminathan Ramakrishnan, Heini Ijäs, Veikko Linko, Adrian Keller
Format: Article
Language:English
Published: Elsevier 2018-01-01
Series:Computational and Structural Biotechnology Journal
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037018300722
Description
Summary:With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-definedDNA origami shapes, the issue of DNA origami stability under numerous application-relevant environmental conditions has received increasing interest in the past few years. In this mini-review we discuss the structural stability, denaturation, and degradation of DNA origami nanostructures under different conditions relevant to the fields of biophysics and biochemistry, biomedicine, and materials science, and the methods to improve their stability for desired applications. Keywords: DNA origami, Stability, Denaturation, Drug delivery, Biophysics, Materials science
ISSN:2001-0370