Modeling and optimization of impinging jet pressure using artificial intelligence

Artificial Intelligence (AI) can be used to model efficient processes. In this paper, AI and CFD are employed to maximize the wall pressure of the impinging jet, which has a wide range of industrial and technological applications. Firstly, the CFD model is validated with the experimental results for...

Full description

Bibliographic Details
Main Authors: Sajjad Miran, Muhammad Imtiaz Hussain, Tahir Abbas Jauhar, Tayybah Kiren, Waseem Arif, Gwi Hyun Lee
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110016823011407
Description
Summary:Artificial Intelligence (AI) can be used to model efficient processes. In this paper, AI and CFD are employed to maximize the wall pressure of the impinging jet, which has a wide range of industrial and technological applications. Firstly, the CFD model is validated with the experimental results for various geometrical and flow rate configurations (H/D= {1, 2, 3, 4, 5, 10, 20}, where H is nozzle to flat plate distance and D is nozzle diameter, and Reynolds Number (Re) ranges {Re= 15,000, 25,000, 30,000}. In explanatory data analysis, Pressure and D are slightly negatively correlated. Re and D show a negative relation of −0.2 whereas a slight negative relation appears for D vs H/D. Re vs H/D have a positive correlation of 0.2. Various activation functions were explored to find that tangent hyperbolic performed best model fit under AI. The Artificial Neural Networks (ANNs) are applied to train the model with minimized least squared error. Finally, the trained model is optimized for the maximum wall pressure over the distance. The maximum pressure obtained from the trained model is 383.83 KPa.
ISSN:1110-0168