In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry
The low-frequency fluctuations of the atomic density within the cell can induce the longterm drift of the K-Rb-<sup>21</sup>Ne spin-exchange relaxation-free (SERF) co-magnetometer output, such that the accurate measurement of in situ atomic density is of great significance for improving...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/10/10/1091 |
_version_ | 1797572504420614144 |
---|---|
author | Sixun Liu Zhuo Wang Yueyang Zhai |
author_facet | Sixun Liu Zhuo Wang Yueyang Zhai |
author_sort | Sixun Liu |
collection | DOAJ |
description | The low-frequency fluctuations of the atomic density within the cell can induce the longterm drift of the K-Rb-<sup>21</sup>Ne spin-exchange relaxation-free (SERF) co-magnetometer output, such that the accurate measurement of in situ atomic density is of great significance for improving the performance of co-magnetometer. In this paper, the complex refractive index model of the spin ensembles under the hybrid optical pumping condition is established first, according to which the relation between atomic density and its complex refractive index is revealed and an optical heterodyne-based scheme for atomic density detection is proposed. The dependence of the atomic density on the demodulated phase signal from the optical heterodyne-based scheme is provided by numerical simulations. After that, a dual acousto-optics frequency shifter (AOFS)-based optical heterodyne interferometry is constructed with a noise level below 1 mrad/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msqrt><mi>Hz</mi></msqrt></mrow></semantics></math></inline-formula> for frequencies > 1 Hz, and a compact SERF co-magnetometer is implemented as the testing medium, by which the atomic density detection with resolution of 0.40 K @ 473 K is reached and the experimental results agree well with theoretical simulations. Moreover, the detection scheme proposed in this paper has the properties of high detection sensitivity and immunity to laser power fluctuation, which are also proved experimentally. |
first_indexed | 2024-03-10T20:57:13Z |
format | Article |
id | doaj.art-046efc8a74b548d4b142015a9ad60b7d |
institution | Directory Open Access Journal |
issn | 2304-6732 |
language | English |
last_indexed | 2024-03-10T20:57:13Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Photonics |
spelling | doaj.art-046efc8a74b548d4b142015a9ad60b7d2023-11-19T17:46:53ZengMDPI AGPhotonics2304-67322023-09-011010109110.3390/photonics10101091In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne InterferometrySixun Liu0Zhuo Wang1Yueyang Zhai2School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, ChinaSchool of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, ChinaSchool of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, ChinaThe low-frequency fluctuations of the atomic density within the cell can induce the longterm drift of the K-Rb-<sup>21</sup>Ne spin-exchange relaxation-free (SERF) co-magnetometer output, such that the accurate measurement of in situ atomic density is of great significance for improving the performance of co-magnetometer. In this paper, the complex refractive index model of the spin ensembles under the hybrid optical pumping condition is established first, according to which the relation between atomic density and its complex refractive index is revealed and an optical heterodyne-based scheme for atomic density detection is proposed. The dependence of the atomic density on the demodulated phase signal from the optical heterodyne-based scheme is provided by numerical simulations. After that, a dual acousto-optics frequency shifter (AOFS)-based optical heterodyne interferometry is constructed with a noise level below 1 mrad/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msqrt><mi>Hz</mi></msqrt></mrow></semantics></math></inline-formula> for frequencies > 1 Hz, and a compact SERF co-magnetometer is implemented as the testing medium, by which the atomic density detection with resolution of 0.40 K @ 473 K is reached and the experimental results agree well with theoretical simulations. Moreover, the detection scheme proposed in this paper has the properties of high detection sensitivity and immunity to laser power fluctuation, which are also proved experimentally.https://www.mdpi.com/2304-6732/10/10/1091SERF co-magnetometeratomic densityoptically thickoptical heterodyne |
spellingShingle | Sixun Liu Zhuo Wang Yueyang Zhai In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry Photonics SERF co-magnetometer atomic density optically thick optical heterodyne |
title | In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry |
title_full | In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry |
title_fullStr | In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry |
title_full_unstemmed | In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry |
title_short | In-Situ Detection for Atomic Density in the K-Rb-<sup>21</sup>Ne Co-Magnetometer via an Optical Heterodyne Interferometry |
title_sort | in situ detection for atomic density in the k rb sup 21 sup ne co magnetometer via an optical heterodyne interferometry |
topic | SERF co-magnetometer atomic density optically thick optical heterodyne |
url | https://www.mdpi.com/2304-6732/10/10/1091 |
work_keys_str_mv | AT sixunliu insitudetectionforatomicdensityinthekrbsup21supnecomagnetometerviaanopticalheterodyneinterferometry AT zhuowang insitudetectionforatomicdensityinthekrbsup21supnecomagnetometerviaanopticalheterodyneinterferometry AT yueyangzhai insitudetectionforatomicdensityinthekrbsup21supnecomagnetometerviaanopticalheterodyneinterferometry |