Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models

We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The...

Olles dieđut

Bibliográfalaš dieđut
Váldodahkkit: Sh. Khachatryan, A. Ferraz, A. Klümper, A. Sedrakyan
Materiálatiipa: Artihkal
Giella:English
Almmustuhtton: Elsevier 2015-10-01
Ráidu:Nuclear Physics B
Liŋkkat:http://www.sciencedirect.com/science/article/pii/S0550321315002928
Govvádus
Čoahkkáigeassu:We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson) scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
ISSN:0550-3213
1873-1562