Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale

In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \begin{align*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{align*}...

Full description

Bibliographic Details
Main Authors: Saroj Panigrahi, Sandip Rout
Format: Article
Language:English
Published: Universidad de La Frontera 2022-12-01
Series:Cubo
Subjects:
Online Access:https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3207/2258
_version_ 1797678795038130176
author Saroj Panigrahi
Sandip Rout
author_facet Saroj Panigrahi
Sandip Rout
author_sort Saroj Panigrahi
collection DOAJ
description In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \begin{align*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{align*} with mixed boundary conditions \begin{align*} \alpha y(\rho(c))-\beta \psi(\rho(c)) y^\Delta(\rho(c))=0,\\ \gamma y(\sigma(d))+\delta \psi(d) y^\Delta(d)=0, \end{align*} where \(\psi:C[\rho(c),\, \sigma(d)]_\mathbb{T}\), \(\psi(t)>0\) for all \(t \in [\rho(c),\,\sigma(d)]_\mathbb{T}\); both \(g\) and \(h : [\rho(c),\,\sigma(d)]_\mathbb{T} \times [0,\,\infty) \to \mathbb{R}\) are continuous and semipositone. We have established the existence of  at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when \(g\) and \(h\) are both superlinear or sublinear or one is superlinear and the other is sublinear for \(\lambda_i>0;\,i=1,\,2\) are sufficiently small.
first_indexed 2024-03-11T23:05:07Z
format Article
id doaj.art-0474bee2d02f4e758312d8c397d6951c
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-03-11T23:05:07Z
publishDate 2022-12-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-0474bee2d02f4e758312d8c397d6951c2023-09-21T13:13:23ZengUniversidad de La FronteraCubo0716-77760719-06462022-12-0124341343710.56754/0719-0646.2403.0413Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scaleSaroj Panigrahi0https://orcid.org/0000-0003-4704-5102Sandip Rout1https://orcid.org/0000-0002-6575-9910School of Mathematics and Statistics, University of Hyderabad, Hyderabad, 500 046, India.School of Mathematics and Statistics, University of Hyderabad, Hyderabad, 500 046, India.In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales: \begin{align*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{align*} with mixed boundary conditions \begin{align*} \alpha y(\rho(c))-\beta \psi(\rho(c)) y^\Delta(\rho(c))=0,\\ \gamma y(\sigma(d))+\delta \psi(d) y^\Delta(d)=0, \end{align*} where \(\psi:C[\rho(c),\, \sigma(d)]_\mathbb{T}\), \(\psi(t)>0\) for all \(t \in [\rho(c),\,\sigma(d)]_\mathbb{T}\); both \(g\) and \(h : [\rho(c),\,\sigma(d)]_\mathbb{T} \times [0,\,\infty) \to \mathbb{R}\) are continuous and semipositone. We have established the existence of  at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when \(g\) and \(h\) are both superlinear or sublinear or one is superlinear and the other is sublinear for \(\lambda_i>0;\,i=1,\,2\) are sufficiently small.https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3207/2258positive solutionsboundary value problemsfixed point theoremconetime scales
spellingShingle Saroj Panigrahi
Sandip Rout
Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
Cubo
positive solutions
boundary value problems
fixed point theorem
cone
time scales
title Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
title_full Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
title_fullStr Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
title_full_unstemmed Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
title_short Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
title_sort existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
topic positive solutions
boundary value problems
fixed point theorem
cone
time scales
url https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3207/2258
work_keys_str_mv AT sarojpanigrahi existenceofpositivesolutionsforanonlinearsemipositoneboundaryvalueproblemsonatimescale
AT sandiprout existenceofpositivesolutionsforanonlinearsemipositoneboundaryvalueproblemsonatimescale