Surface Treatments of PEEK for Osseointegration to Bone

Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants....

Full description

Bibliographic Details
Main Authors: Jay R. Dondani, Janaki Iyer, Simon D. Tran
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/13/3/464
Description
Summary:Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. However, PEEK has a highly hydrophobic and bioinert surface that attenuates the differentiation and proliferation of osteoblasts and leads to implant failure. Several improvements have been made to the osseointegration potential of PEEK, which can be classified into three main categories: (1) surface functionalization with bioactive agents by physical or chemical means; (2) incorporation of bioactive materials either as surface coatings or as composites; and (3) construction of three-dimensionally porous structures on its surfaces. The physical treatments, such as plasma treatments of various elements, accelerated neutron beams, or conventional techniques like sandblasting and laser or ultraviolet radiation, change the micro-geometry of the implant surface. The chemical treatments change the surface composition of PEEK and should be titrated at the time of exposure. The implant surface can be incorporated with a bioactive material that should be selected following the desired use, loading condition, and antimicrobial load around the implant. For optimal results, a combination of the methods above is utilized to compensate for the limitations of individual methods. This review summarizes these methods and their combinations for optimizing the surface of PEEK for utilization as an implanted biomaterial.
ISSN:2218-273X