A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification

Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preproc...

Full description

Bibliographic Details
Main Authors: Khiet Dang, Toi Vo, Lua Ngo, Huong Ha
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:IBRO Neuroscience Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667242122000884
Description
Summary:Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preprocessing approaches and UNet architecture, (2) brain tumor regions were extracted using segmentation, then (3) high-grade gliomas and low-grade gliomas were classified using the VGG and GoogleNet implementations. Among the additional preprocessing techniques used in conjunction with the segmentation task, the combination of data augmentation and Window Setting Optimization was found to be the most effective tool, resulting in the Dice coefficient of 0.82, 0.91, and 0.72 for enhancing tumor, whole tumor, and tumor core, respectively. While most of the proposed models achieve comparable accuracies of about 93 % on the testing dataset, the pipeline of VGG combined with UNet segmentation obtains the highest accuracy of 97.44 %. In conclusion, the presented architecture illustrates a realistic model for detecting gliomas; moreover, it emphasizes the significance of data augmentation and segmentation in improving model performance.
ISSN:2667-2421