OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo

Abstract Carbapenem-resistance in Klebsiella pneumoniae (KP) sequence type ST258 is mediated by carbapenemases (e.g. KPC-2) and loss or modification of the major non-selective porins OmpK35 and OmpK36. However, the mechanism underpinning OmpK36-mediated resistance and consequences of these changes o...

Full description

Bibliographic Details
Main Authors: Joshua L. C. Wong, Maria Romano, Louise E. Kerry, Hok-Sau Kwong, Wen-Wen Low, Stephen J. Brett, Abigail Clements, Konstantinos Beis, Gad Frankel
Format: Article
Language:English
Published: Nature Portfolio 2019-09-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-11756-y
Description
Summary:Abstract Carbapenem-resistance in Klebsiella pneumoniae (KP) sequence type ST258 is mediated by carbapenemases (e.g. KPC-2) and loss or modification of the major non-selective porins OmpK35 and OmpK36. However, the mechanism underpinning OmpK36-mediated resistance and consequences of these changes on pathogenicity remain unknown. By solving the crystal structure of a clinical ST258 OmpK36 variant we provide direct structural evidence of pore constriction, mediated by a di-amino acid (Gly115-Asp116) insertion into loop 3, restricting diffusion of both nutrients (e.g. lactose) and Carbapenems. In the presence of KPC-2 this results in a 16-fold increase in MIC to Meropenem. Additionally, the Gly-Asp insertion impairs bacterial growth in lactose-containing medium and confers a significant in vivo fitness cost in a murine model of ventilator-associated pneumonia. Our data suggests that the continuous selective pressure imposed by widespread Carbapenem utilisation in hospital settings drives the expansion of KP expressing Gly-Asp insertion mutants, despite an associated fitness cost.
ISSN:2041-1723