Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification

Recognizing insect pests using images is an important and challenging research issue. A correct species classification will help choosing a more proper mitigation strategy regarding crop management, but designing an automated solution is also difficult due to the high similarity between species at s...

Full description

Bibliographic Details
Main Authors: Jacó C. Gomes, Díbio L. Borges
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/12/8/1733
Description
Summary:Recognizing insect pests using images is an important and challenging research issue. A correct species classification will help choosing a more proper mitigation strategy regarding crop management, but designing an automated solution is also difficult due to the high similarity between species at similar maturity stages. This research proposes a solution to this problem using a few-shot learning approach. First, a novel insect data set based on curated images from IP102 is presented. The IP-FSL data set is composed of 97 classes of adult insect images, and 45 classes of early stages, totalling 6817 images. Second, a few-shot prototypical network is proposed based on a comparison with other state-of-art models and further divergence analysis. Experiments were conducted separating the adult classes and the early stages into different groups. The best results achieved an accuracy of 86.33% for the adults, and 87.91% for early stages, both using a Kullback–Leibler divergence measure. These results are promising regarding a crop scenario where the more significant pests are few and it is important to detect them at earlier stages. Further research directions would be in evaluating a similar approach in particular crop ecosystems, and testing cross-domains.
ISSN:2073-4395