On quasi-identities of finite modular lattices. II

The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finit...

Full description

Bibliographic Details
Main Authors: A.O. Basheyeva, S.M. Lutsak
Format: Article
Language:English
Published: Academician Ye.A. Buketov Karaganda University 2023-06-01
Series:Қарағанды университетінің хабаршысы. Математика сериясы
Subjects:
Online Access:http://mathematics-vestnik.ksu.kz/index.php/mathematics-vestnik/article/view/565
Description
Summary:The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasiidentity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture. We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated by this lattice is not finitely based.
ISSN:2518-7929
2663-5011