The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
The inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these fi...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/ace2c3 |
_version_ | 1827826212146249728 |
---|---|
author | C. Alig A. Prieto M. Blaña M. Frischman C. Metzl A. Burkert O. Zier A. Streblyanska |
author_facet | C. Alig A. Prieto M. Blaña M. Frischman C. Metzl A. Burkert O. Zier A. Streblyanska |
author_sort | C. Alig |
collection | DOAJ |
description | The inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these filaments in one of the least accreting BHs known, M31 (10 ^−7 L _Edd ) using hydrodynamical simulations. The evolution of a streamer of gas particles moving under the barred potential of M31 is followed from kiloparsec distance to the central parsecs. After an exploratory study of initial conditions, a compelling fit to the observed dust/ionized gas morphologies and line-of-sight velocities in the inner hundreds of parsecs is produced. After several million years of streamer evolution, during which friction, thermal dissipation, and self-collisions have taken place, the gas settles into a disk tens of parsecs wide. This is fed by numerous filaments that arise from an outer circumnuclear ring and spiral toward the center. The final configuration is tightly constrained by a critical input mass in the streamer of several 10 ^3 M _☉ (at an injection rate of 10 ^−4 ${M}_{\odot }\,{{\rm{yr}}}^{-1}$ ); values above or below this lead to filament fragmentation or dispersion respectively, which are not observed. The creation of a hot gas atmosphere in the region of ∼10 ^6 K is key to the development of a nuclear spiral during the simulation. The final inflow rate at 1 pc from the center is ∼1.7 × 10 ^−7 M _☉ yr ^−1 , consistent with the quiescent state of the M31 BH. |
first_indexed | 2024-03-12T03:01:43Z |
format | Article |
id | doaj.art-04be306ec2934401ad1945b86f2712a9 |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-03-12T03:01:43Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-04be306ec2934401ad1945b86f2712a92023-09-03T14:39:27ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01953110910.3847/1538-4357/ace2c3The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of AndromedaC. Alig0A. Prieto1https://orcid.org/0000-0002-3585-2639M. Blaña2https://orcid.org/0000-0003-2139-0944M. Frischman3C. Metzl4A. Burkert5https://orcid.org/0000-0001-6879-9822O. Zier6https://orcid.org/0000-0003-1811-8915A. Streblyanska7Excellence Cluster ORIGINS , Boltzmannstr. 2, D-85748 Garching, Germany; Leibniz Supercomputing Centre (LRZ) , D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Instituto de Astrofísica de Canarias (IAC) , E-38200 La Laguna, Tenerife, Spain; Universidad de La Laguna , Dept. Astrofísica, E-38206 La Laguna, Tenerife, SpainUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, Germany; Instituto de Astrofísica , Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, ChileUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, GermanyExcellence Cluster ORIGINS , Boltzmannstr. 2, D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für Astrophysik , D-85748 Garching bei München, GermanyInstituto de Astrofísica de Canarias (IAC) , E-38200 La Laguna, Tenerife, SpainThe inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these filaments in one of the least accreting BHs known, M31 (10 ^−7 L _Edd ) using hydrodynamical simulations. The evolution of a streamer of gas particles moving under the barred potential of M31 is followed from kiloparsec distance to the central parsecs. After an exploratory study of initial conditions, a compelling fit to the observed dust/ionized gas morphologies and line-of-sight velocities in the inner hundreds of parsecs is produced. After several million years of streamer evolution, during which friction, thermal dissipation, and self-collisions have taken place, the gas settles into a disk tens of parsecs wide. This is fed by numerous filaments that arise from an outer circumnuclear ring and spiral toward the center. The final configuration is tightly constrained by a critical input mass in the streamer of several 10 ^3 M _☉ (at an injection rate of 10 ^−4 ${M}_{\odot }\,{{\rm{yr}}}^{-1}$ ); values above or below this lead to filament fragmentation or dispersion respectively, which are not observed. The creation of a hot gas atmosphere in the region of ∼10 ^6 K is key to the development of a nuclear spiral during the simulation. The final inflow rate at 1 pc from the center is ∼1.7 × 10 ^−7 M _☉ yr ^−1 , consistent with the quiescent state of the M31 BH.https://doi.org/10.3847/1538-4357/ace2c3Interstellar mediumAndromeda GalaxySupermassive black holesInterstellar filamentsAstronomical simulationsHydrodynamical simulations |
spellingShingle | C. Alig A. Prieto M. Blaña M. Frischman C. Metzl A. Burkert O. Zier A. Streblyanska The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda The Astrophysical Journal Interstellar medium Andromeda Galaxy Supermassive black holes Interstellar filaments Astronomical simulations Hydrodynamical simulations |
title | The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda |
title_full | The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda |
title_fullStr | The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda |
title_full_unstemmed | The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda |
title_short | The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda |
title_sort | accretion mode in sub eddington supermassive black holes getting into the central parsecs of andromeda |
topic | Interstellar medium Andromeda Galaxy Supermassive black holes Interstellar filaments Astronomical simulations Hydrodynamical simulations |
url | https://doi.org/10.3847/1538-4357/ace2c3 |
work_keys_str_mv | AT calig theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT aprieto theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT mblana theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT mfrischman theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT cmetzl theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT aburkert theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT ozier theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT astreblyanska theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT calig accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT aprieto accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT mblana accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT mfrischman accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT cmetzl accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT aburkert accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT ozier accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda AT astreblyanska accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda |