The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda

The inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these fi...

Full description

Bibliographic Details
Main Authors: C. Alig, A. Prieto, M. Blaña, M. Frischman, C. Metzl, A. Burkert, O. Zier, A. Streblyanska
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ace2c3
_version_ 1827826212146249728
author C. Alig
A. Prieto
M. Blaña
M. Frischman
C. Metzl
A. Burkert
O. Zier
A. Streblyanska
author_facet C. Alig
A. Prieto
M. Blaña
M. Frischman
C. Metzl
A. Burkert
O. Zier
A. Streblyanska
author_sort C. Alig
collection DOAJ
description The inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these filaments in one of the least accreting BHs known, M31 (10 ^−7 L _Edd ) using hydrodynamical simulations. The evolution of a streamer of gas particles moving under the barred potential of M31 is followed from kiloparsec distance to the central parsecs. After an exploratory study of initial conditions, a compelling fit to the observed dust/ionized gas morphologies and line-of-sight velocities in the inner hundreds of parsecs is produced. After several million years of streamer evolution, during which friction, thermal dissipation, and self-collisions have taken place, the gas settles into a disk tens of parsecs wide. This is fed by numerous filaments that arise from an outer circumnuclear ring and spiral toward the center. The final configuration is tightly constrained by a critical input mass in the streamer of several 10 ^3 M _☉ (at an injection rate of 10 ^−4 ${M}_{\odot }\,{{\rm{yr}}}^{-1}$ ); values above or below this lead to filament fragmentation or dispersion respectively, which are not observed. The creation of a hot gas atmosphere in the region of ∼10 ^6 K is key to the development of a nuclear spiral during the simulation. The final inflow rate at 1 pc from the center is ∼1.7 × 10 ^−7 M _☉ yr ^−1 , consistent with the quiescent state of the M31 BH.
first_indexed 2024-03-12T03:01:43Z
format Article
id doaj.art-04be306ec2934401ad1945b86f2712a9
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-12T03:01:43Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-04be306ec2934401ad1945b86f2712a92023-09-03T14:39:27ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01953110910.3847/1538-4357/ace2c3The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of AndromedaC. Alig0A. Prieto1https://orcid.org/0000-0002-3585-2639M. Blaña2https://orcid.org/0000-0003-2139-0944M. Frischman3C. Metzl4A. Burkert5https://orcid.org/0000-0001-6879-9822O. Zier6https://orcid.org/0000-0003-1811-8915A. Streblyanska7Excellence Cluster ORIGINS , Boltzmannstr. 2, D-85748 Garching, Germany; Leibniz Supercomputing Centre (LRZ) , D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Instituto de Astrofísica de Canarias (IAC) , E-38200 La Laguna, Tenerife, Spain; Universidad de La Laguna , Dept. Astrofísica, E-38206 La Laguna, Tenerife, SpainUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, Germany; Instituto de Astrofísica , Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, ChileUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, GermanyExcellence Cluster ORIGINS , Boltzmannstr. 2, D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748 Garching bei München, GermanyUniversitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München , Scheinerstraße 1, D-81679 München, Germany; Max-Planck-Institut für Astrophysik , D-85748 Garching bei München, GermanyInstituto de Astrofísica de Canarias (IAC) , E-38200 La Laguna, Tenerife, SpainThe inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10 ^−3 in Eddington units, L _Edd ) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these filaments in one of the least accreting BHs known, M31 (10 ^−7 L _Edd ) using hydrodynamical simulations. The evolution of a streamer of gas particles moving under the barred potential of M31 is followed from kiloparsec distance to the central parsecs. After an exploratory study of initial conditions, a compelling fit to the observed dust/ionized gas morphologies and line-of-sight velocities in the inner hundreds of parsecs is produced. After several million years of streamer evolution, during which friction, thermal dissipation, and self-collisions have taken place, the gas settles into a disk tens of parsecs wide. This is fed by numerous filaments that arise from an outer circumnuclear ring and spiral toward the center. The final configuration is tightly constrained by a critical input mass in the streamer of several 10 ^3 M _☉ (at an injection rate of 10 ^−4 ${M}_{\odot }\,{{\rm{yr}}}^{-1}$ ); values above or below this lead to filament fragmentation or dispersion respectively, which are not observed. The creation of a hot gas atmosphere in the region of ∼10 ^6 K is key to the development of a nuclear spiral during the simulation. The final inflow rate at 1 pc from the center is ∼1.7 × 10 ^−7 M _☉ yr ^−1 , consistent with the quiescent state of the M31 BH.https://doi.org/10.3847/1538-4357/ace2c3Interstellar mediumAndromeda GalaxySupermassive black holesInterstellar filamentsAstronomical simulationsHydrodynamical simulations
spellingShingle C. Alig
A. Prieto
M. Blaña
M. Frischman
C. Metzl
A. Burkert
O. Zier
A. Streblyanska
The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
The Astrophysical Journal
Interstellar medium
Andromeda Galaxy
Supermassive black holes
Interstellar filaments
Astronomical simulations
Hydrodynamical simulations
title The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
title_full The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
title_fullStr The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
title_full_unstemmed The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
title_short The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda
title_sort accretion mode in sub eddington supermassive black holes getting into the central parsecs of andromeda
topic Interstellar medium
Andromeda Galaxy
Supermassive black holes
Interstellar filaments
Astronomical simulations
Hydrodynamical simulations
url https://doi.org/10.3847/1538-4357/ace2c3
work_keys_str_mv AT calig theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT aprieto theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT mblana theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT mfrischman theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT cmetzl theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT aburkert theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT ozier theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT astreblyanska theaccretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT calig accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT aprieto accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT mblana accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT mfrischman accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT cmetzl accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT aburkert accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT ozier accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda
AT astreblyanska accretionmodeinsubeddingtonsupermassiveblackholesgettingintothecentralparsecsofandromeda