SCHISTOSOMIASIS: GEOSPATIAL SURVEILLANCE AND RESPONSE SYSTEMS IN SOUTHEAST ASIA

Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and R...

Full description

Bibliographic Details
Main Authors: J. Malone, R. Bergquist, L. Rinaldi, Z. Xiao-nong
Format: Article
Language:English
Published: Copernicus Publications 2016-10-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/1409/2016/isprs-archives-XLI-B8-1409-2016.pdf
Description
Summary:Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for <i>Oncomelania hupensis</i>, the intermediate host snail of <i>Schistosoma japonicum</i>. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS) guidelines in the health societal benefit area is discussed.
ISSN:1682-1750
2194-9034