Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves
Tomato is an agricultural product of great economic importance because it is one of the most consumed vegetables in the world. The most crucial chemical element for the growth and development of tomato is nitrogen (N). However, incorrect nitrogen usage can alter the quality of tomato fruit, renderin...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/24/6366 |
_version_ | 1797455417316474880 |
---|---|
author | Brahim Benmouna Raziyeh Pourdarbani Sajad Sabzi Ruben Fernandez-Beltran Ginés García-Mateos José Miguel Molina-Martínez |
author_facet | Brahim Benmouna Raziyeh Pourdarbani Sajad Sabzi Ruben Fernandez-Beltran Ginés García-Mateos José Miguel Molina-Martínez |
author_sort | Brahim Benmouna |
collection | DOAJ |
description | Tomato is an agricultural product of great economic importance because it is one of the most consumed vegetables in the world. The most crucial chemical element for the growth and development of tomato is nitrogen (N). However, incorrect nitrogen usage can alter the quality of tomato fruit, rendering it undesirable to customers. Therefore, the goal of the current study is to investigate the early detection of excess nitrogen application in the leaves of the Royal tomato variety using a non-destructive hyperspectral imaging system. Hyperspectral information in the leaf images at different wavelengths of 400–1100 nm was studied; they were taken from different treatments with normal nitrogen application (A), and at the first (B), second (C) and third (D) day after the application of excess nitrogen. We investigated the performance of nine machine learning classifiers, including two classic supervised classifiers, i.e., linear discriminant analysis (LDA) and support vector machines (SVMs), three hybrid artificial neural network classifiers, namely, hybrid artificial neural networks and independent component analysis (ANN-ICA), harmony search (ANN-HS) and bees algorithm (ANN-BA) and four classifiers based on deep learning algorithms by convolutional neural networks (CNNs). The results showed that the best classifier was a CNN method, with a correct classification rate (CCR) of 91.6%, compared with an average of 85.5%, 68.5%, 90.8%, 88.8% and 89.2% for LDA, SVM, ANN-ICA, ANN-HS and ANN-BA, respectively. This shows that modern CNN methods should be preferred for spectral analysis over other classical techniques. These CNN architectures can be used in remote sensing for the precise detection of the excessive use of nitrogen fertilizers in large extensions. |
first_indexed | 2024-03-09T15:53:11Z |
format | Article |
id | doaj.art-04c83ec13ad047a980bc6e87a888ba0e |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-09T15:53:11Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-04c83ec13ad047a980bc6e87a888ba0e2023-11-24T17:48:34ZengMDPI AGRemote Sensing2072-42922022-12-011424636610.3390/rs14246366Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato LeavesBrahim Benmouna0Raziyeh Pourdarbani1Sajad Sabzi2Ruben Fernandez-Beltran3Ginés García-Mateos4José Miguel Molina-Martínez5Computer Science and Systems Department, University of Murcia, 30100 Murcia, SpainDepartment of Biosystems Engineering, College of Agriculture, University of Mohaghegh Ardabili, Ardabil 56199-11367, IranComputer Engineering Department, Sharif University of Technology, Tehran 11155-1639, IranComputer Science and Systems Department, University of Murcia, 30100 Murcia, SpainComputer Science and Systems Department, University of Murcia, 30100 Murcia, SpainFood Engineering and Agricultural Equipment Department, Technical University of Cartagena, 30203 Cartagena, SpainTomato is an agricultural product of great economic importance because it is one of the most consumed vegetables in the world. The most crucial chemical element for the growth and development of tomato is nitrogen (N). However, incorrect nitrogen usage can alter the quality of tomato fruit, rendering it undesirable to customers. Therefore, the goal of the current study is to investigate the early detection of excess nitrogen application in the leaves of the Royal tomato variety using a non-destructive hyperspectral imaging system. Hyperspectral information in the leaf images at different wavelengths of 400–1100 nm was studied; they were taken from different treatments with normal nitrogen application (A), and at the first (B), second (C) and third (D) day after the application of excess nitrogen. We investigated the performance of nine machine learning classifiers, including two classic supervised classifiers, i.e., linear discriminant analysis (LDA) and support vector machines (SVMs), three hybrid artificial neural network classifiers, namely, hybrid artificial neural networks and independent component analysis (ANN-ICA), harmony search (ANN-HS) and bees algorithm (ANN-BA) and four classifiers based on deep learning algorithms by convolutional neural networks (CNNs). The results showed that the best classifier was a CNN method, with a correct classification rate (CCR) of 91.6%, compared with an average of 85.5%, 68.5%, 90.8%, 88.8% and 89.2% for LDA, SVM, ANN-ICA, ANN-HS and ANN-BA, respectively. This shows that modern CNN methods should be preferred for spectral analysis over other classical techniques. These CNN architectures can be used in remote sensing for the precise detection of the excessive use of nitrogen fertilizers in large extensions.https://www.mdpi.com/2072-4292/14/24/6366hyperspectral remote sensingnitrogen predictiontomatocrop yield improvement |
spellingShingle | Brahim Benmouna Raziyeh Pourdarbani Sajad Sabzi Ruben Fernandez-Beltran Ginés García-Mateos José Miguel Molina-Martínez Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves Remote Sensing hyperspectral remote sensing nitrogen prediction tomato crop yield improvement |
title | Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves |
title_full | Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves |
title_fullStr | Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves |
title_full_unstemmed | Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves |
title_short | Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves |
title_sort | comparison of classic classifiers metaheuristic algorithms and convolutional neural networks in hyperspectral classification of nitrogen treatment in tomato leaves |
topic | hyperspectral remote sensing nitrogen prediction tomato crop yield improvement |
url | https://www.mdpi.com/2072-4292/14/24/6366 |
work_keys_str_mv | AT brahimbenmouna comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves AT raziyehpourdarbani comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves AT sajadsabzi comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves AT rubenfernandezbeltran comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves AT ginesgarciamateos comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves AT josemiguelmolinamartinez comparisonofclassicclassifiersmetaheuristicalgorithmsandconvolutionalneuralnetworksinhyperspectralclassificationofnitrogentreatmentintomatoleaves |