The Applications of Soft Computing Methods for Seepage Modeling: A Review

In recent times, significant research has been carried out into developing and applying soft computing techniques for modeling hydro-climatic processes such as seepage modeling. It is necessary to properly model seepage, which creates groundwater sources, to ensure adequate management of scarce wate...

Full description

Bibliographic Details
Main Authors: Vahid Nourani, Nazanin Behfar, Dominika Dabrowska, Yongqiang Zhang
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/23/3384
Description
Summary:In recent times, significant research has been carried out into developing and applying soft computing techniques for modeling hydro-climatic processes such as seepage modeling. It is necessary to properly model seepage, which creates groundwater sources, to ensure adequate management of scarce water resources. On the other hand, excessive seepage can threaten the stability of earthfill dams and infrastructures. Furthermore, it could result in severe soil erosion and consequently cause environmental damage. Considering the complex and nonlinear nature of the seepage process, employing soft computing techniques, especially applying pre-post processing techniques as hybrid methods, such as wavelet analysis, could be appropriate to enhance modeling efficiency. This review paper summarizes standard soft computing techniques and reviews their seepage modeling and simulation applications in the last two decades. Accordingly, 48 research papers from 2002 to 2021 were reviewed. According to the reviewed papers, it could be understood that regardless of some limitations, soft computing techniques could simulate the seepage successfully either through groundwater or earthfill dam and hydraulic structures. Moreover, some suggestions for future research are presented. This review was conducted employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) method.
ISSN:2073-4441