Comparison of PM<sub>10</sub> Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach

Receptor-oriented models, including positive matrix factorization (PMF) analyses, are now commonly used to elaborate and/or evaluate action plans to improve air quality. In this context, the SOURCES project has been set-up to gather and investigate in a harmonized way 15 datasets of chemical compoun...

Full description

Bibliographic Details
Main Authors: Samuël Weber, Dalia Salameh, Alexandre Albinet, Laurent Y. Alleman, Antoine Waked, Jean-Luc Besombes, Véronique Jacob, Géraldine Guillaud, Boualem Meshbah, Benoit Rocq, Agnès Hulin, Marta Dominik-Sègue, Eve Chrétien, Jean-Luc Jaffrezo, Olivier Favez
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/10/6/310
Description
Summary:Receptor-oriented models, including positive matrix factorization (PMF) analyses, are now commonly used to elaborate and/or evaluate action plans to improve air quality. In this context, the SOURCES project has been set-up to gather and investigate in a harmonized way 15 datasets of chemical compounds from PM<sub>10</sub> collected for PMF studies during a five-year period (2012&#8722;2016) in France. The present paper aims at giving an overview of the results obtained within this project, notably illustrating the behavior of key primary sources as well as focusing on their statistical robustness and representativeness. Overall, wood burning for residential heating as well as road transport were confirmed to be the two main primary sources strongly influencing PM<sub>10</sub> loadings across the country. While wood burning profiles, as well as those dominated by secondary inorganic aerosols, present a rather good homogeneity among the sites investigated, some significant variabilities were observed for primary traffic factors, illustrating the need to better characterize the diversity of the various vehicle exhaust and non-exhaust emissions. Finally, natural sources, such as sea salts (widely observed in internal mixing with anthropogenic compounds), primary biogenic aerosols and/or terrigenous particles, were also found as non-negligible PM<sub>10</sub> components at every investigated site.
ISSN:2073-4433