Summary: | In recent years the ever-expanding internet of things (IoT) is becoming more empowered to revolutionize our world with the advent of cutting-edge features and intelligence in an IoT ecosystem. Thanks to the development of the IoT, researchers have devoted themselves to technologies that convert a conventional home into an intelligent occupants-aware place to manage electric resources with autonomous devices to deal with excess energy consumption and providing a comfortable living environment. There are studies to supplement the innate shortcomings of the IoT and improve intelligence by using cloud computing and machine learning. However, the machine learning-based autonomous control devices lack flexibility, and cloud computing is challenging with latency and security. In this paper, we propose a rule-based optimization mechanism on an embedded edge platform to provide dynamic home appliance control and advanced intelligence in a smart home. To provide actional control ability, we design and developed a rule-based objective function in the EdgeX edge computing platform to control the temperature states of the smart home. Compared to cloud computing, edge computing can provide faster response and higher quality of services. The edge computing paradigm provides better analysis, processing, and storage abilities to the data generated from the IoT sensors to enhance the capability of IoT devices concerning computing, storage, and network resources. In order to satisfy the paradigm of distributed edge computing, all the services are implemented as microservices. The microservices are connected to each other through REST APIs based on the constrained IoT devices to provide all the functionalities that accomplish a trade-off between energy consumption and occupant-desired environment setting for the smart home appliances. We simulated our proposed system to control the temperature of a smart home; through experimental findings, we investigated the application against the delay time and overall memory consumption by the embedded edge system of EdgeX. The result of this research work suggests that the implemented services operated efficiently in the raspberry pi 3 hardware of IoT devices.
|