Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions

Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}. Then, the problem −tan∫Ω∣∇u(x)∣2dxΔu=α(x...

Full description

Bibliographic Details
Main Author: Ricceri Biagio
Format: Article
Language:English
Published: De Gruyter 2024-02-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2023-0104
_version_ 1797316633640828928
author Ricceri Biagio
author_facet Ricceri Biagio
author_sort Ricceri Biagio
collection DOAJ
description Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}. Then, the problem −tan∫Ω∣∇u(x)∣2dxΔu=α(x)uqinΩu>0inΩu=0on∂Ω(k−1)π<∫Ω∣∇u(x)∣2dx<(k−1)π+π2\left\{\begin{array}{ll}-\tan \left(\mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\right)\Delta u=\alpha \left(x){u}^{q}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u\gt 0\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u=0\hspace{1.0em}& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega \\ \left(k-1)\pi \lt \mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\lt \left(k-1)\pi +\frac{\pi }{2}\hspace{1.0em}\end{array}\right. has a unique weak solution u˜\tilde{u}, which is the unique global minimum in H01(Ω){H}_{0}^{1}\left(\Omega ) of the functional u→12tan∫Ω∣∇u˜(x)∣2dx∫Ω∣∇u(x)∣2dx−1q+1∫Ωα(x)∣u+(x)∣q+1dx,u\to \frac{1}{2}\tan \left(\mathop{\int }\limits_{\Omega }| \nabla \tilde{u}\left(x){| }^{2}{\rm{d}}x\right)\mathop{\int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x-\frac{1}{q+1}\mathop{\int }\limits_{\Omega }\alpha \left(x)| {u}^{+}\left(x){| }^{q+1}{\rm{d}}x, where u+=max{0,u}{u}^{+}=\max \left\{0,u\right\}.
first_indexed 2024-03-08T03:21:12Z
format Article
id doaj.art-0503aa7b5c7946e4a13ddb7eb9c100fa
institution Directory Open Access Journal
issn 2191-950X
language English
last_indexed 2024-03-08T03:21:12Z
publishDate 2024-02-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-0503aa7b5c7946e4a13ddb7eb9c100fa2024-02-12T09:11:36ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2024-02-01131435610.1515/anona-2023-0104Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functionsRicceri Biagio0Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, ItalyLet Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}. Then, the problem −tan∫Ω∣∇u(x)∣2dxΔu=α(x)uqinΩu>0inΩu=0on∂Ω(k−1)π<∫Ω∣∇u(x)∣2dx<(k−1)π+π2\left\{\begin{array}{ll}-\tan \left(\mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\right)\Delta u=\alpha \left(x){u}^{q}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u\gt 0\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u=0\hspace{1.0em}& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega \\ \left(k-1)\pi \lt \mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\lt \left(k-1)\pi +\frac{\pi }{2}\hspace{1.0em}\end{array}\right. has a unique weak solution u˜\tilde{u}, which is the unique global minimum in H01(Ω){H}_{0}^{1}\left(\Omega ) of the functional u→12tan∫Ω∣∇u˜(x)∣2dx∫Ω∣∇u(x)∣2dx−1q+1∫Ωα(x)∣u+(x)∣q+1dx,u\to \frac{1}{2}\tan \left(\mathop{\int }\limits_{\Omega }| \nabla \tilde{u}\left(x){| }^{2}{\rm{d}}x\right)\mathop{\int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x-\frac{1}{q+1}\mathop{\int }\limits_{\Omega }\alpha \left(x)| {u}^{+}\left(x){| }^{q+1}{\rm{d}}x, where u+=max{0,u}{u}^{+}=\max \left\{0,u\right\}.https://doi.org/10.1515/anona-2023-0104discontinuous kirchhoff functionexistenceuniquenesslocalizationminimization property35j1535j2535j6149j35
spellingShingle Ricceri Biagio
Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
Advances in Nonlinear Analysis
discontinuous kirchhoff function
existence
uniqueness
localization
minimization property
35j15
35j25
35j61
49j35
title Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
title_full Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
title_fullStr Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
title_full_unstemmed Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
title_short Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
title_sort existence uniqueness localization and minimization property of positive solutions for non local problems involving discontinuous kirchhoff functions
topic discontinuous kirchhoff function
existence
uniqueness
localization
minimization property
35j15
35j25
35j61
49j35
url https://doi.org/10.1515/anona-2023-0104
work_keys_str_mv AT ricceribiagio existenceuniquenesslocalizationandminimizationpropertyofpositivesolutionsfornonlocalproblemsinvolvingdiscontinuouskirchhofffunctions