Generating large disordered stealthy hyperuniform systems with ultrahigh accuracy to determine their physical properties

Hyperuniform many-particle systems are characterized by a structure factor S(k) that is precisely zero as |k|→0; and stealthy hyperuniform systems have S(k)=0 for the finite range 0<|k|≤K, called the “exclusion region.” Through a process of collective-coordinate optimization, energy-minimizing di...

Full description

Bibliographic Details
Main Authors: Peter K. Morse, Jaeuk Kim, Paul J. Steinhardt, Salvatore Torquato
Format: Article
Language:English
Published: American Physical Society 2023-09-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.5.033190
Description
Summary:Hyperuniform many-particle systems are characterized by a structure factor S(k) that is precisely zero as |k|→0; and stealthy hyperuniform systems have S(k)=0 for the finite range 0<|k|≤K, called the “exclusion region.” Through a process of collective-coordinate optimization, energy-minimizing disordered stealthy hyperuniform systems of moderate size have been made to high accuracy, and their novel physical properties have shown great promise. However, minimizing S(k) in the exclusion region is computationally intensive as the system size becomes large. In this paper, we present an improved methodology to generate such states using double-double precision calculations on graphical processing units (GPUs) that reduces the deviations from zero within the exclusion region by a factor of approximately 10^{30} for system sizes more than an order of magnitude larger. We further show that this ultrahigh accuracy is required to draw conclusions about their corresponding characteristics, such as the nature of the associated energy landscape and the presence or absence of Anderson localization, which might be masked, even when deviations are relatively small.
ISSN:2643-1564