Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

A new two-dimensional cellular automata and finite difference (CA-FD) model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration...

Full description

Bibliographic Details
Main Authors: ZHANG Min, XU Ai-yan, WANG Qiang, LI Lu-lu
Format: Article
Language:zho
Published: Journal of Materials Engineering 2016-06-01
Series:Cailiao gongcheng
Subjects:
Online Access:http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.06.002
Description
Summary:A new two-dimensional cellular automata and finite difference (CA-FD) model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.
ISSN:1001-4381
1001-4381