Continuous Cultivation of Microalgae in Cattle Slaughterhouse Wastewater Treated with Hydrodynamic Cavitation

Cattle slaughtering produce large amounts of wastewater containing high concentrations of organic matter and nutrients and requires significant treatment before disposal or reutilization. However, the nutrients contained can be valued as a medium for microalgal biomass generation. In this work, hydr...

Full description

Bibliographic Details
Main Authors: Ruly Terán Hilares, Fabio P. Sánchez Vera, Gilberto J. Colina Andrade, Kevin Tejada Meza, Jaime Cárdenas García, David Alfredo Pacheco Tanaka
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/14/8/1288
Description
Summary:Cattle slaughtering produce large amounts of wastewater containing high concentrations of organic matter and nutrients and requires significant treatment before disposal or reutilization. However, the nutrients contained can be valued as a medium for microalgal biomass generation. In this work, hydrodynamic cavitation (HC) followed by membrane filtration or biological (microalgae cultivation) treatment in continuous mode were performed. From cattle slaughterhouse wastewater (CSW), by the effect of HC treatment with air injection in batch mode, more than 20% of the chemical oxygen demand (COD) was removed. In a continuous HC process, the COD content in output was 324 mg O<sub>2</sub>/L, which is 68% lower than the supplied CSW. After that, 76% of residual COD was removed by filtration through a tubular alumina membrane (600 nm). Finally, 85% of residual COD after HC treatment in 24 h in a batch mode was removed by microalgae. On the other hand, the COD concentration in the output was around 59 mg O<sub>2</sub>/L in continuous mode, which represents 85–93% COD removal. The process involving HC and microalgae growing looks promising since in addition to water treatment, the microalgae produced could be valued in a biorefinery concept.
ISSN:2073-4441